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� This study examines hydrogen electrolysis, its modelling and a state-of-the-art review.

� Electrolysis offers a sustainable, high-purity method of producing hydrogen.

� Details of hydrogen electrolysis are presented, including challenges and prospects.

� Electrolysis technological issues and future suggested directions are outlined.

� Advancements in hydrogen electrolysis are necessary for a renewable energy future.
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The advancement of hydrogen technology is driven by factors such as climate change,

population growth, and the depletion of fossil fuels. Rather than focusing on the contro-

versy surrounding the environmental friendliness of hydrogen production, the primary

goal of the hydrogen economy is to introduce hydrogen as an energy carrier alongside

electricity. Water electrolysis is currently gaining popularity because of the rising demand

for environmentally friendly hydrogen production. Water electrolysis provides a sustain-

able, eco-friendly, and high-purity technique to produce hydrogen. Hydrogen and oxygen

produced by water electrolysis can be used directly for fuel cells and industrial purposes.

The review is urgently needed to provide a comprehensive analysis of the current state of

water electrolysis technology and its modelling using renewable energy sources. While

individual methods have been well documented, there has not been a thorough investi-

gation of these technologies. With the rising demand for environmentally friendly

hydrogen production, the review will provide insights into the challenges and issues with

electrolysis techniques, capital cost, water consumption, rare material utilization,
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electrolysis efficiency, environmental impact, and storage and security implications. The

objective is to identify current control methods for efficiency improvement that can reduce

costs, ensure demand, increase lifetime, and improve performance in a low-carbon energy

system that can contribute to the provision of power, heat, industry, transportation, and

energy storage. Issues and challenges with electrolysis techniques, capital cost, water

consumption, rare material utilization, electrolysis efficiency, environmental impact, and

storage and security implications have been discussed and analysed. The primary objective

is to explicitly outline the present state of electrolysis technology and to provide a critical

analysis of the modelling research that had been published in recent literatures. The

outcome that emerges is one of qualified promise: hydrogen is well-established in partic-

ular areas, such as forklifts, and broader applications are imminent. This evaluation will

bring more research improvements and a road map to aid in the commercialization of the

water electrolyser for hydrogen production. All the insights revealed in this study will

hopefully result in enhanced efforts in the direction of the development of advanced

hydrogen electrolyser technologies towards clean, sustainable, and green energy.

© 2023 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
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Introduction

The current fossil-based energy and transportation systems

are not sustainable, and the global energy demand is expected

to rise due to population growth and industrialization in

developing countries [1]. However, the increase in greenhouse

gas (GHG) emissions from these systems have raised concerns

about climate change and the need to prevent harmful human
drogen electrolyser techn
ernational Journal of Hyd
intervention in the climate system [2]. Utilising fossil fuels as

the primary energy source has generated a significant rise in

carbon dioxide (CO2) and other GHG in our atmosphere [3],

which causes global warming [4]. The impact extraction of

natural resources can contaminate the water, air, and land

with toxic byproducts of extraction when processing that has

not been sufficiently treated [5]. Water quality can degrade

gradually due to gradual changes in climate variables and

environmental degradation. A recent study [6] discovered that
ologies and their modelling for sustainable energy production: A
rogen Energy, https://doi.org/10.1016/j.ijhydene.2023.04.014
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consuming, cooking, and bathing with contaminated water

potentially results in skin diseases, high blood pressure, kid-

ney disease, diarrhea, acute respiratory infections, etc. To

avoid similar effects in the future, business as usual must

change, notwithstanding the tremendous efforts to improve

performance made in recent research on the human health

implications of water contamination by responsible enter-

prises and alert government [5]. The consequences also result

in economic and political issues [7].

Supply security and climate change are two important

concerns for the future of the energy sector, posing the issue

of determining the most efficient approach to reduce emis-

sions while also supplying the energy needed to sustain

economies. Fossil fuels are finite; hence alternative energy

sources are required [7]. Carbon pricing is one of the alterna-

tives that has an important role in facilitating energy transi-

tions, such as the transformation from high-carbon energy

(coal and oil) to low-carbon energy (natural gas) and clean

energy (renewable resources) [8]. The carbon market can

minimise the cost of emission reduction in society, boost in-

vestment in green and low-carbon industries, and regulate

capital flow by allocating carbon emission reduction resources

optimally [8]. Future energy sourcesmust meet the conditions

of being carbon-free and renewable for the long-term treat-

ment of climate change and reducing reliance on oil imports

[9]. In terms of cost, electrolyzer production costs vary based

on size, materials, and volume, and have been decreasing, but

must decrease further to compete with other fuels; govern-

ments worldwide are promoting the use of electrolyzers as

demand for hydrogen fuel in transportation and industrial

processes increases [2].

Developing new energy systems based on renewable or

sustainable resources is challenging [10]. Variable and inter-

mittent renewable energy (RE) are the major challenges to

100%RE [11]. Location-dependent renewables are hard to store

and transport [10]. The attractive concept of storing RE in a

transferable, storable, and useable energy carrier such as

hydrogen may provide the solution [12]. Hydrogen can be

produced using fossil fuels and RE as feedstock, processes,

and technology [13]. 96% of hydrogen is generated from nat-

ural gas, oil, and coal hydrocarbons. The presence of toxic

carbonmonoxide (CO) in hydrogen derived from hydrocarbon

sources can significantly degrade the properties of fuel cells

that convert the chemical energy of hydrogen to electrical

energy [14]. A significant amount of the CO2 emitted into the

atmosphere contributes to climate change, destroying the

ecosystem [15]. Producing hydrogen from non-renewable hy-

drocarbons is indeed not sustainable. Hydrogen must be

produced using renewable sources and no CO2 [16]. Currently,

rising oil prices result in higher energy and production ex-

penses, as well as an increase in interest rates [17]. Even

though oil can influence the domestic and global economy, it

is a non-renewable energy source [18]. A rise in oil prices in-

duces industries to replace conventional energy productswith

sustainable energy alternatives [19].

Hydrogen is not naturally occurring like fossil fuels [9].

Hydrogen is an abundant renewable energy source [20]. Pure

100% hydrogen can be synthesized by water electrolysis to

produce hydrogen and oxygen [13]. The electrolysis of water

was first reported in 1789 [21], and industrial water electrolysis
Please cite this article as: Arsad AZ et al., Hydrogen electrolyser techn
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had been established for 100 years [22]. Water electrolysis

comprises three adjacent components: the anode, electrolyte,

and cathode. When hydrogen oxidises at the anode, cations

move to the cathode through the electrolyte, and free elec-

trons flow to the external circuit. At the cathode, cations and

electrons reduce oxygen to water [23]. Water electrolysis has

been mainly utilised for technical applications to generate

hydrogen rather than oxygen [11]. Hydrogen produced by

water electrolysis is the greatest energy carrier to balance

renewable primary energy supply and end-use energy de-

mand [24]. Hydrogen combustion produces water vapour.

Thus, it is the cleanest, most efficient, and most sustainable

fossil fuel alternative [16]. Hydrogen produced from renew-

able resources is also a) regarded as a viable solution to

environmental issues, b) negligible greenhouse gas emissions,

c) has high energy density, and d) works with fuel cells (FCs)

[25]. Hydrogen is considered the most sustainable alternative

to fossil fuels for ensuring energy sustainability [26]. The

practicality and application of hydrogen necessitate the

evaluation of factors such as storage capacity, energy density

versatility, transportation, and environmental consequences

[7]. Additionally, renewable energy sources such as solar,

wind, and ocean energy are gaining popularity [27]. It might be

an energy revolution. It inspires water electrolysis research

[16]. When sources of power are intermittent and/or produce

current densities that are much below these optimal levels for

prolonged periods, conventional electrolysers can struggle to

run efficiently and safely [28]. This is due to the gas production

and membrane separator permeability issues. The high-

efficiency gas diffusion electrodes and membrane electrode

assembly can be promising industrial electrolytic devices [29].

Decoupling the oxygen and hydrogen evolution reactions of

water splitting such that the two gases are not generated in

the same cell at the same timemay benefit with power supply

intermittency and low current density operation [30]. Decou-

pled water electrolysis has recently become a major topic in

water electrolysis, providing an ion-membrane-free electrol-

ysis method for the production of high-quality hydrogen [31].

Electrolysers generate hydrogen and oxygen with little

impurities. These can be extensively dispersed and suited to

satisfy renewable energy systems' hydrogen and oxygen

needs, fuelling stations for FC cars, and industrial uses. The

most common types of electrolysers are alkaline and polymer

electrolyte membrane (PEM) [32]. Alkaline electrolysis is an

established and reliable technology that differentiates itself

from other types of electrolysis in terms of cost and ease of

use [33]. Modelling of water electrolyser is essential for

simulating and predicting the behaviour of hydrogen gener-

ating systems. Realistic modelling of the full electrolyser (cell

including balance-of-system components, including heat

management and controls) is crucial when the electrolyser is

coupled directly to a renewable source of electricity, as the

irregular and variable power supply can be anticipated. In the

previous ten years, electrolyser research has intensified, and

increasingly sophisticated models have emerged [32]. As

depicted in Fig. 1(a) (publications trend: data from the Scopus

database), the increasing popularity of this research field is

reflected by the volatility in the number of scientific publica-

tions published since 2004. This study focuses on hydrogen

electrolyser papers that contain the terms "hydrogen
ologies and their modelling for sustainable energy production: A
rogen Energy, https://doi.org/10.1016/j.ijhydene.2023.04.014
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Fig. 1 e (a) Evaluation publications trend per year conducted in this study using Scopus including the terms (“hydrogen”

AND electrolyser) AND (“control” AND “strategy”) AND (“sustainable” AND “energy). The search was done for the fourth

week of August 2022. (b) For different hydrogen electrolyser technologies, the number of publications per year from 1990 to

2019 containing the specified keywords Because of increased interest in the energy turnaround, the publication frequency

rises in 2010. Despite the topic being frequently studied technology-independently, extra publications for technologies with

low-temperature, such as proton exchange membrane electrolysis (PEMEL), and alkaline water electrolysis (AEL) have more

publications than high-temperature technology like solid oxide electrolysis (SOEL) [19]. (c) Demonstration of the impacts of

electrolyser on power system transient reduction of single-phase to ground fault and three-phase ground faults with and

without electrolysers in the grid [20].

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( x x x x ) x x x4
electrolyser," "control strategy," and "sustainable energy."

The graphic reveals that hydrogen electrolysers with control

strategies have been a popular research focus during the past

decade. Simultaneously, research on hydrogen electrolyser is

expanding; however, reviewing past literature for future

development is necessary. Based on the study conducted by

Ref. [19] For different hydrogen electrolyser technologies, the

number of publications per year from 1990 to 2019 containing

the specified keywords is shown in Fig. 1(b). Because of

increased interest in the energy turnaround, the publication

frequency rises in 2010. Despite the topic being frequently

studied technology-independently, extra publications for

technologies with low-temperature, such as proton exchange

membrane electrolysis (PEMEL) and alkalinewater electrolysis

(AEL) have more publications than high-temperature tech-

nology like solid oxide electrolysis (SOEL). The hydrogen

electrolyser has positive impact on the grid stability as shown

in Fig. 1(c) [20]. It can be seen that the hydrogen electrolyser
Please cite this article as: Arsad AZ et al., Hydrogen electrolyser techn
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has decrease the transients state that are caused by faults in

the grid as compared without electrolyser.

Numerous reviews published describe the use of hydrogen

produced by water electrolysis. The review on water electrol-

ysis technologies by Kumar et al. [21] supports the develop-

ment of the PEM electrolyser as a practical method for

producing hydrogen on a commercial scale. Carmo et al. [13]

examine the current state of PEMelectrolysis technology. Zeng

et al. [25] examined water electrolysis technologies and

comparedwater electrolysisusing thermodynamic andkinetic

parameters. Abdalla et al. [7] review hydrogen technologies

that provide a comprehensive description and comparison of

existing storage systems. Nikolaidis & Poulikkas [9] provide a

comparative review of the most prominent hydrogen produc-

tion methods. Tong et al. [22] highlight issues in electrolyser

design and future techniques that may offer highly selective

and active materials for water electrolysis in the existence of

typical contaminants. Eriksson & Gray [23] review hydrogen
ologies and their modelling for sustainable energy production: A
rogen Energy, https://doi.org/10.1016/j.ijhydene.2023.04.014
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Fig. 2 e Methods of hydrogen production [6,21].
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energy integration into hybrid energy systems, focusing on

fuel cell power production. Dawood et al. [4] provide an over-

view of the hydrogen energy system and technology projects.

This paper provides an overview of hydrogen production

from fossil fuels, and renewable sources discuss in section 2,

as well as a description of water electrolysis as the most

certain solution for eco-friendly hydrogen production,

hydrogen as renewable energy storage, and a summary of

project-based hydrogen storage. The evolution of hydrogen

electrolysers is then discussed in Section 3. Section 4 covers

hydrogen electrolyser models based on a literature review.

Section 5 discusses the issues, difficulties, and solutions

concerned with hydrogen electrolyser research. The conclu-

sion in Section 6 reiterates the necessity to enhance research

to realise the development of the hydrogen electrolyser. Our

contribution in reviewing has three aspects: technologies with

an emphasis on electrolysis production, models, and control

strategies. In addition, limited literature describes the strate-

gies used for controlling a hydrogen electrolyser. Reviewing

the models and control strategies from different literatures

can aid the researcher in comprehending how cell compo-

nents affect electrolyser performance and recommend routes

for future research to enhance electrolyser performance.

Hydrogen is among the most crucial energy carriers in

existence today. Despite this, producing hydrogen from non-

renewable sources has many environmental implications.

Producing hydrogen from sustainable sources is the best way

for a hydrogen community to meet its energy needs. Sus-

tainable development favours energy resources since they are

affordable and have minimal to no negative impacts, with

solar energy having the most potential. Thus, the widespread

adoption of a light-based hydrogen energy system is vital for

global sustainability. The hydrogen-based production, stor-

age, utilization, and overview project based on hydrogen

storage is intensively explored in this section 2.1. Contrary to

other industrial operations (such as biological production and

steam reformation), water electrolysis for hydrogen produc-

tion is the focus of several works linked to energy imple-

mentations and RE technologies. Section 2.2 describes the

primary technologies of water electrolysis: solid oxide elec-

trolyser (SOE), polymer electrolyte membrane (PEM), and

alkaline water electrolysis (AEL), as well as the electrolyser

system structure, storage, and hydrogen renewable energy
Please cite this article as: Arsad AZ et al., Hydrogen electrolyser techn
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system for power generation. Section 2.3 provides an overview

of hydrogen storage projects globally.

Hydrogen production overview

Hydrogen can be produced in a variety of ways. An initial split

can be done according to the energy source employed in

production. Presently, hydrogen is generated from natural gas

(48%), heavy oils and naphtha (30%), and coal (18%) [24].

Indeed, 96% of hydrogen comes from fossil fuels, and the

remaining 4% comes from water by utilising electrolyser, a RE

source [36]. Hydrogen can be produced from two major cate-

gories using either fossil fuels and hydrocarbons or RE sources

[37], as shown in Fig. 2. The first subcategory involves the

processing of fossil fuels and comprises the hydrocarbon

reforming and pyrolysis processes. The chemical techniques

involved in the hydrocarbon reforming process are steam

reforming, partial oxidation, and thermal steam reforming.

The second subcategory involves technologies that produce

hydrogen from renewable sources, such as biomass and

water. The primary source of potential energy from biomass is

heat production [38]. Biomass processes for hydrogen pro-

duction can be categorized as either biological or thermo-

chemical techniques, with examples of biological processes

including bio photolysis, dark fermentation, and photo

fermentation, while thermochemical processes include py-

rolysis, gasification, combustion, and liquefaction; further-

more, water is also a highly desirable renewable resource for

hydrogen production. Electrolysis is the primary synthesis

mechanism in this context, although thermolysis and photo

electrolysis are also gaining interest. Table 1 summarises

various hydrogen production technologies, feedstock advan-

tages, disadvantages, operating temperature, cost, and effi-

ciency. The significant cost of hydrogen production

technologies and their limited operational lifetimes necessi-

tated the implementation of improvements. In developed

nations, the costs of receiving such energy services have

varied significantly in recent years [39]. Furthermore, the sig-

nificance of energy efficiency as a policy goal is linked to

economic interests, industrial competitiveness, and energy

security, and is growing aligned to environmental benefits

such as the reduction of carbon dioxide emissions and the

customer's profitability/competitiveness [40].
ologies and their modelling for sustainable energy production: A
rogen Energy, https://doi.org/10.1016/j.ijhydene.2023.04.014
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Table 1 e Summary of various hydrogen production technologies, advantages, disadvantages, operating temperature, efficiency and cost [21,28,29,30,31].

Technology H2 production
method

Feedstock Advantages Disadvantages Operating
temperatures

(�)

Efficiency
(%)

Cost [$/kg]

Fossil Fuels Steam Reforming

(SR)

Hydrocarbons Existing infrastructure and

developed technology

CO and CO2 produced an

unstable supply.

700e1000 74e85 2.27

Partial Oxidation

(PXO)

Hydrocarbons Revolutionary technology Produced heavy oils and

petroleum coke with H2

Production.

800e1000 60e75 1.48

Autothermal

Reforming (ATR)

Hydrocarbons Existing infrastructure and

well-established technology

Utilising fossil fuels

produces CO2.

700e1000 60e75 1.48

RE-based biomass

(biological)

Bio-photolysis Biomass þ Sunlight Operated in mild

conditions, consuming CO2

and producing O2.

Low H2 yields, huge reactor

necessary, O2 sensitivity,

high material price

Ambient 10e11 2.13

Dark

Fermentation

Biomass A simple approach, no light,

no limit O2, CO2-free, waste

recycling

Removal of fatty acids, low

H2 rates, ineffectiveness,

and the need for a large

reactor volume

Ambient 60e80 2.57

Photo

Fermentation

Biomass þ Sunlight Recycled organic waste

water is CO2-neutral.

Low H2 generation and

efficiency, sunlight need,

large reactor volume, O2

sensitivity

Ambient 0.1 2.83

RE-based biomass

(thermochemical)

Pyrolysis Biomass Cheap, plentiful, and CO2-

neutral

Tar creation, changing H2

levels due to contaminants

in the feedstock, and

seasonal availability

300e800 35e50 1.59e1.70

Gasification Biomass Cheap, plentiful, and CO2-

neutral

Changing H2 rates due to

feedstock contaminants, tar

formation

800e1000 30e40 1.77e2.05

Water Splitting Electrolysis water Existing infrastructure (O2),

zero-emission, and

established technologies

Storage and transport

constraints

700e1000 60e80 10.30

Thermolysis water O2-byproduct, abundant

feedstock, clean and

sustainable

High capital expenses,

hazardous elements, and

corrosion.

Above 2500 20e45 7.98e8.40

Photolysis Water þ sunlight No emissions, sufficient

feedstock, and a by-product

as O2.

Inefficient photocatalytic

substance, low efficiency,

needs sunlight

Ambient 16 8e10
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Referring to Fig. 2, there are four primary production stra-

tegies/methods from a technology perspective: (i) hydrocar-

bon reforming, (ii) hydrocarbon pyrolysis, (iii) biomass

processing, and (iv) water splitting [9]. Steam methane

reforming (SMR) and pyrolysis are the most extensively uti-

lised processes for hydrogen synthesis from fossil fuels [24].

These methods are the most developed and widely used

technologies, supplying practically all hydrogen consumption.

Hydrogen generated by the combustion of fossil fuels pro-

duces hazardous pollutants [32]. The unavailability of

hydrogen gas in nature and the need for low-cost production

technology are the key obstacles to using hydrogen gas as a

fuel [33]. For instance, Parthasarathy and Narayanan [47]

provide SMR and coal gasification as the cheapest solutions

(0.75 US$kg�1 and 0.92 US$kg�1 of H2 produced, these without

CO2 capture), whereas electrolysis costs between 2.56 US$kg�1

and 2.97 US$kg-1 by including the production of electricity

with nuclear energy. Electrolysis is the most well-known

water-splitting process. Additionally, the primary objective

is to generate clean, efficient power when the reactor is

coupled [28]. As a result, the primary focus is on water split-

ting, more particularly electrolysis. The emphasis is on

hydrogen production by electrolysis technology; hence sec-

tion 2.2 depicts an electrolysis process. Furthermore, for the

production of hydrogen as shown in Table 1, diverse methods

and sources are currently in use in transportation applica-

tions, stationary/domestic electric/heat generation, locally

stored energy, balancing of renewable electricity production,

and portable electronics [42].

Hydrogen production by water electrolysis

"Water is the coal of the future." declared Jules Verne in 1874's
in his novel “Mysterious Island.” The first water electrolysis

tests were done in 1789. The investigations used an electro-

staticmachine that discharged electricity onto gold electrodes

submerged in water. Alessandro Volta devised the Voltaic pile

in 1800 for electrolysis. They used copper electrodes and a

voltaic pile to conduct electrolysis experiments. Finally, J.

Ritter performed true water electrolysis, collecting both oxy-

gen and hydrogen. However, due to engineering and technical

issues, industrial electrolysis began in the late 1800s [35].

Water is plentiful and has endless foundation material.

Hydrogenwill be the purest type of energy that humanitymay

consume if the required energy consumption is met by

renewable sources [6]. As seen in Fig. 2 and Table 1, hydrogen

can be produced through electrolysis, thermolysis (or ther-

mochemical water splitting), and photo-electrolysis (or pho-

toelectrochemical water splitting (PEC) [28]. Water electrolysis

is the process of separating water into its constituents by

producing a potential difference between two electrodes in an

electrolyte. Electrolysis is the reverse of the FC process, which

utilises hydrogen and oxygen to produce electricity andwater.

Electrolysis requires a low-cost water and electricity supply

[28]. Electrolysis is the ideal technique for splitting water. The

process is endothermic; hence the input of energy needed is

electricity. In electrolysis, hydrogen is produced at the cath-

ode and oxygen at the anode through an equation (1) [49].

Equation (1) shows the half-reaction thermodynamic poten-

tials at the anode and cathode are temperature and pressure
Please cite this article as: Arsad AZ et al., Hydrogen electrolyser techn
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dependent [50]. Electrons travel from the anode through an

electrical circuit to the cathode, where they are consumed in

the oxygen reduction process. When oxygen is present at the

cathode, current can be generated, but the current generation

is not spontaneous in the absence of oxygen. If the current

generation is driven by introducing a voltage (>0.2 V in oper-

ation) between the anode and the cathode, protons are

reduced to hydrogen gas at the cathode [51] (see equation (1)).

Anode : H2O/
1
2
O2 þ 2Hþ þ 2e�

Cathode : 2Hþ þ2e�/H2

Overall : H2O/H2 þ 1
2
O2 (1)

Recently, the researcher found that nanoparticles effi-

ciently transport electrons, affecting aerobic microbial energy

metabolism for biohydrogen production. Nanoparticle surface

and quantum size effects may promote biohydrogen produc-

tion. For example nanomaterials such as Cu, Fe, Au, Ag, Pd, Ni,

etc can be utilised to produce biohydrogen. Nanoparticle

surface and quantum size effects may promote biohydrogen

production. Nanoparticle size is proportional to electron

transfer velocity among nanoparticles and enzyme stimulants

like hydrogenase, which appears to catalyse the trans-

formation of hydrogen to proton and vice versa, either as

electron drains or even to produce reducing energy from

oxidation [52]. The article [53] analyses the relationship be-

tween copper and zinc prices (mainly metals) from 2011 to

2021 and predicts their future pricing. This is utilised to bal-

ance the long-term models of commodity prices across mul-

tiple marketplaces.

Technologies of water electrolysis
Numerous hydrogen production technologies, including

electrolysis, have been carefully analysed from economic,

environmental, technological, and social perspectives [43,44].

Water electrolysis is now themost crucial industrial approach

for practically pure hydrogen; therefore, its future importance

[54]. Electrolysers are well-recognised as critical devices for

converting energy to gas in P2G systems [46,48]. The P2G

concept uses water electrolysis to convert RE (wind, solar,

geothermal, hydro) into gas. Based on established technology,

this attractive approach for hydrogen generation now ac-

counts for only 4% of hydrogen production, but it is estimated

to grow to 22% by 2050 [55].

In terms of electrolyte types, there are three primary types

of electrolysers [56]: (i) solid oxide electrolyser (SOE) [57], (ii)

polymer electrolyte membrane (PEM) electrolyser [58] and (ii)

alkalinewater electrolysis (AEL) [59]. Their varieties depend on

the electrolyte, operating circumstances, and ionic agents (Hþ,
O2�, OH) [60]. Nevertheless, the operational fundamentals are

equivalent. These characterizations affect the electrolysis

system's efficiency, energy prices, and capital expenditures,

which affect electrolysed hydrogen prices [61]. Furthermore,

liquid hydrogen has advantages such as high heating value

per mass and huge cooling capacity as a consequence of its

elevated specific heat [62]. Table 2 and Fig. 3 summarize the

operation specifications of three types of electrolysers; solid
ologies and their modelling for sustainable energy production: A
rogen Energy, https://doi.org/10.1016/j.ijhydene.2023.04.014
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Table 2 e Typical specifications of solid oxide electrolyser (SOE), polymer electrolyte membrane (PEM) and alkaline water
electrolysis (AEL).

Electrolyser SOE PEM AEL

Technology maturity Demonstration Commercial Mature

Electrolyte Ceramic (Solid) Polymer (Solid) KOH (Liquid)

Cell temperature, �C 500e1000 60e90 50e90

Operating Pressure (bar) <30 15e30 2e10

Cell Voltage (V) 0.7e1.5 1.8e2.2 1.8e2.4

Current Density (A/cm2) 0.3e1 0.6e2 0.2e0.4

Power density (W/cm2) e Up to 4.4 Up to 1.0

Voltage Efficiency (%) 81e86 67e82 62e82

Charge carrier O2- Hþ OH�

Anode LSM-YSZ IrO2, RuO2 Ni, NieCo alloys

Cathode Ni-YSZ Pt, PtePd Ni, NieMo alloys

System energy consumption,

kWh/Nm3

2.5e3.5 4.5e7.0 4.5e7.0

H2 Capacity (Nm3/h) <40 <40 <760
H2 purity 99.9 99.999 >99.8
Stack lifetime, hr <40,000 <20,000 <90,000
System lifetime, yr e 10e20 20e30

Cold start-up time, min >60 <15 15

Advantages Current density requires low

energy, low capital loss, no

catalyst, and high efficiency.

High current density, compact,

high purity of hydrogen, simple

design, quick response/start

time

High stability, low cost, mature

technology, no catalyst, longer

lifetime

Disadvantages Delamination of electrodes,

safety problems, instability of

electrodes, unsuitable sealing

Precious catalyst, lower

durability, Expensive

membrane, acidic medium

Gas permeation, lower density,

corrosive electrolyte,

dynamicity

LSM: Lanthanum strontium manganese, YSZ: Yttria stabilised Zirconia. References: [34,48,54].
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oxide electrolysers (SOE) (a), polymer electrolyte membrane

(PEM) (b), and (c) AEL. The polarisation curves and thermo-

neutral values of several different electrolyzer methods are

presented in Fig. 3 (d) [63]. When compared to an electrolyzer

that operates at a low temperature, SOE enables the achieve-

ment of larger thermoneutral current densities as well as

relative power densities. Real-world systems typically func-

tion at temperatures higher than thermoneutral due to the

accumulation of thermal losses, and the operative current

densities are typically higher than the thermoneutral value

[63]. Large-scale, sustainable hydrogen production is needed

to reduce carbon dioxide emissions and boost industrial ac-

tivities. Current commercial methods like low-temperature

electrolysis will be expected to meet much of this demand

during the upcoming 20 years [64]. Based on the study con-

ducted by Ayers [64], collaboration among government, aca-

demic, and industry sectors will increase the hydrogen

capacity during the next 25 years, as shown in Fig. 3(e). To

show the high interest and importance of this technology to-

wards green energy technology, different hydrogen electro-

lyzer projects are witness dramatic increase, according to the

International Renewable Energy Agency (IRENA) [65]. It can be

seen in Fig. 3(f) that the accelerated scalability of electrolyzers

for the production of hydrogen.

According to Table 2, hydrogen production via AEL is

currently an established technology with commercially viable

megawatt (MW) scale facilities. PEM and SOE systems have

also evolved to an enviable level of performance [45]. Themost

important criteria in Table 2 are voltage efficiency and current

density. The efficiency of an electrolysis process is measured

by comparing ideal and actual energy requirements [43].
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Additionally, it was stated in a review [66] that comparing the

energy usage and efficiency of different commercial electro-

lytic methods used in the United States, China, and Europe. A

commercially accessible electrolyser has an efficiency range

between 50 and 80% (73% and 64% for higher heating and

lower heating values, respectively) when employing AEL or

PEM electrolysers. Nonetheless, improvements are achievable

and being pursued, as seen in Table 2. Currently, China has

been the world's largest hydrogen producer for seven years,

China has ranked number one in the world in hydrogen pro-

duction. Cost considerations led to the production of 95% of

this hydrogen from fossil fuels. The public is increasingly

accepting of electricity-to-hydrogen conversion as a way of

efficiently utilising abundant RE [60]. Worldwide, there are

comparatively few demonstration projects integrating the

electrolytic hydrogen production process with RE sources.

This has been covered in Ref. [67].

Electrolyser system structure
The electrolyser stack comprises numerous separate cells

connected in series to achieve a high voltage despite each

cell's low potential (2 V). Also, high-current density electro-

lyser systems with parallel stacks can achieve multi-MW

scalability at voltage levels (a several kV) [68]. Fig. 4 shows

an electrolyser system introduced by Yue et al. [69]. The

electrolyser is coupled to the gasewater separators and con-

nected to the power source via an alternating current (AC)/

direct current (DC) converter. The system requires a power

supply unit (PSU) and a balanced plant (BOP). Gas separators

separate the generated gases from the water before purifying

and drying them to the desired level for separate clean
ologies and their modelling for sustainable energy production: A
rogen Energy, https://doi.org/10.1016/j.ijhydene.2023.04.014
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Fig. 3 e (a) Operation schematic of electrolysers (a) SOE, (b) PEM and (c) AEL [67]. (d) Voltage vs. current density comparison of

the solid oxide, PEM, and alkaline electrolysers [63]. (e) Energy output (in the form of hydrogen) is expected from cutting-

edge water-splitting technology in the next quarter-century [64]. (f) Project scale and electrolyser technology timetable for

power-to-hydrogen projects across the globe based on International Renewable Energy Agency [65]. Accelerated scalability

of electrolysers for the production of hydrogen.
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hydrogen ðH2Þ and oxygen ðO2Þ gas. A heat exchanger heats

the electrolyte as it flows through the electrolyser cells [70].

Electrolyser stacks can be connected in parallel in an attempt

to increase the output current to a multi-megawatt level.

Transformer and rectifier power the electrolyser stack.

Electrolyser system design
Energy storage (ES) is essential to assure the dependability of

off-grid power supply from variable sources [66]. ES is utilised

in power systems to improve energy supply (including

improving the quality of voltage characteristics and lowering

the influence of loads and unstable sources on these param-

eters) and manage energy flow [71]. By 2040, the IEA predicts
Please cite this article as: Arsad AZ et al., Hydrogen electrolyser techn
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that about a third of global electricity will come from unreli-

able renewable sources such as wind and solar [72]. This will

necessitate large-scale, long-term electrical storage, with the

generation and storage of hydrogen as a viable solution [73].

This large-scale hydrogen storage research seeks safe, reli-

able, lightweight, and expensive FC technologies. Hydrogen

should be produced, delivered, kept, and transmitted. The key

technological issue for a viable hydrogen economy is storage,

which has proven to be an insurmountable obstacle. Making

hydrogen more energy-dense is essential for transport. How-

ever, solutions to the hydrogen storage issue are rapidly

emerging. Scientists are investigating novel methods of

hydrogen storage. Hydrogen can be preserved in numerous
ologies and their modelling for sustainable energy production: A
rogen Energy, https://doi.org/10.1016/j.ijhydene.2023.04.014
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Fig. 4 e System structure of electrolyser [69].
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ways for future use. Currently, compressed hydrogen, liquid

hydrogen in cryogenic tanks, and storage material are avail-

able [74]. Hydrogen can be stored via physisorption, physical

adsorption on a solid surface, or chemisorption using metal

hydrides. Up to the present, the most popular method has

been compressed gas [72]. Numerous reviews of various

hydrogen storage systems are available [75,76] and are not

covered in this study. Economical, environmentally friendly,

and long-term mass storage are considered to be essential

research goals.

Compressed hydrogen gas storage. A procedure for technically

preserving hydrogen gas at high pressure is known as com-

pressed hydrogen storage (up to 10,000 pounds per square

inch). Toyota's Mirai FC uses 700-bar commercial hydrogen

tanks [77]. Compressed hydrogen storage is simple and cheap.

Compression uses 20% of hydrogen's energy [66]. The com-

pressed technique is straightforward, but the procedure is

inefficient in terms of volumetric and gravimetric efficiency

[74]. The disadvantages are low system energy density

compared to fossil fuel systems and high-pressure safety

considerations [72].
Fig. 5 e Hydrogen distributed po
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Liquid hydrogen. Liquid hydrogen is referred slush hydrogen,

generally highly resistant to corrosion and colourless at 20 K.

Hydrogen is commonly stored as a liquid, which needs cryo-

genic storage. Despite compressed gas tanks (stored:

0.030 kg L�1), liquid hydrogen containers have a storage ca-

pacity of 0.070 kg L�1 [74]. The storage tanks must be well

insulated to keep the sub-zero temperature. When hydrogen

is strongly bonded to certain other elements, liquefaction

occurs. Current research focuses on developing stronger and

lighter composite tankmaterials [74]. This procedure employs

approximately 30%e40% of the hydrogen's energy output [78].

Even though the technique appears to be intriguing due to its

gravimetric and volumetric efficiency, additional research is

necessary to understand issues such as hydrogen uptake and

release, a high hydrogen liquefaction rate causing energy loss,

hydrogen braise, and storage cost [79]. The disadvantages of

liquid hydrogen are high energy requirements, hydrogen boil-

off, and high storage costs. Due to boil-off, it's not ideal for

permanent ES [72]. In hydrogen storage, chemical bonding,

molecule adsorption, and van der Waals attraction and

dissociation all play roles in hydrogen transport. Electro-

chemical potential, temperature, and pressure can change

molecular/ionic hydrogen's surface and bonding strength. The

information may be found in this review [74], which does not

discuss in this research.

Distributed hydrogen power system. Once hydrogen is pro-

duced, it can be utilised to store energy and convert it to heat

or electricity or be used as an energy carrier [41]. FCs are the

remedies for ES. FCs are ecologically friendly, silent, and have

better energy efficiency [80]. FCs have positive and negative

electrodes, connector plates, and current collectors. FC stacks

can generate a few watts to multi-MW, rendering devices

robust [41]. The electrolysis of water can function admirably

on small sizes. It can be regarded as more sustainable due to

the use of renewable energy. Water electrolysis may play a

significant role in a decentralised power generation, trans-

mission, preservation, and usage scheme serving isolated

populations as shown in Fig. 5. It uses RE to produce hydrogen,

which could be used as a fuel gas for heating and as a way to
wer generation model [81].

ologies and their modelling for sustainable energy production: A
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store energy. If RE sources are abundant, surplus energy can

be kept as hydrogen by electrolyzing water. Hydrogen will

then be utilised to generate energy in FCs or as fuel gas. The

diagram also shows a diesel engine as a backup and a hot

water storage tank for domestic use. This model for a

distributed hydrogen RES was proposed by Badwal et al. [81].

Overview of project-based hydrogen storage

Numerous hydrogen ES projects have been undertaken

worldwide, indicating hydrogen's viability as an ES medium

for its widespread industrial usage. In 2011, Kippers et al. [82]

introduced the Netherlands' Ameland project became the first

to incorporate hydrogen into a natural gas network. The

combination was delivered to 14 for domestic use. A PEM

electrolyser produced 100% renewable hydrogen blended into

natural gas at 5%e20%. Existing pipes, cooktops, and boilers

were not evaluated for safety during the procedure.

In 2019, Pierson et al. [83] introduced the DATAZERO proj-

ect to integrate RE into data centres by addressing the diffi-

culties of sizing, optimising, and controlling RE in data centres

in the software and hardware stages. It proposed a system

based on PVs, WTs, hydrogen storage, batteries, and super-

capacitors to improve IT infrastructure adaptability and

manoeuvrability. Austrians store wind and PV underground

with Underground Sun Storage. Because RE is not flexible and

doesn't meet requirements, excess RE is converted to

hydrogen for later use. The project discovered that Subterra-

nean gas storage tanks could resist upwards of 10% hydrogen,

helping to balance seasonal RE supplies [15]. In Europe, four

demonstration facilities have been erected under the EU's
Horizon 2020 initiative to show hydrogen and Li-ion batteries'
technological and economic feasibility [3]. First-ever evalua-

tion of metal hybrid storage in the UK can refer to Ref. [84].

HyDeploy is a hydrogen energy initiative to reduce CO2

emissions and achieve net-zero emissions by 2050. HyDeploy

is the first project in the United Kingdom to incorporate

hydrogen into a natural gas pipeline. Furthermore, more

diverse initiatives utilised RE sources to supply the electro-

lyser's electricity needs that may be discovered in reviews

[48,69,78].
Hydrogen electrolyser models

Modelling has become an integral part of electrolysis tech-

nology development. An increasing number of research pa-

pers highlight the importance of conducting a comprehensive

analysis of this subject to identify the advantages and limi-

tations of scientific literature and to provide guidance for

future research [85]. Numerous models for water electrolysis

have been published in the literature, as it plays a critical role

in hydrogen systems. Modelling of water electrolysis is crucial

for simulating and predicting the performance of hydrogen-

generating systems [32]. Most of these models are developed

from the fundamental set of equations relating the applied

potential to the current and hydrogen production in an elec-

trolysis cell [86], and each is customized to its application or
Please cite this article as: Arsad AZ et al., Hydrogen electrolyser techn
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the background of its authors. Electrolysis cells are distin-

guished by their electrolyte composition [87]. Modelling is

essential for quantifying efficiency, analysing dynamic

behaviour, and developing effective control and monitoring

systems [88]. For research and other purposes, modelling may

reflect an energy system's behaviour, such as real-time pre-

diction of the energy system's trajectory as its inputs and

loads fluctuate [89].

Water electrolysis produces H2 and O2 (Equation (1)) in the

two-stages electrochemical reaction. The reduction reaction

is initiated at the negatively charged cathode, while at the

positively charged anode, the oxidation reactions take place.

The charge carrier can be O2-, Hþ, or OH-, depending on the

water electrolysis technology: SOE, PEM, and AEL. Numerous

authors have used the approach to modelling water elec-

trolysis. Under the influence of electrical energy, the entire

operation of electrolysis demonstrates the separation of

water molecules. The electro-motive force (emf) required to

separate water into H2 and O2 is referred to as reversible

voltage (Urev), which is a function of temperature and pres-

sure and can be computed using the Nernst equation [90] (see

equation (2)):

Urev ¼U0
rev;T;P � ln

�
R:Tel

n:F

�
:ln

 
aH2O

aH2
:aO0:5

2

!
(2)

Where U0
rev;T;P is the reversible cell voltage at standard tem-

perature and pressure, R is the universal gas constant in J/(mol

K), Tel is the operational cell temperature in K, aH2
;a1=2

O2
and aH2O

are the partial pressure of species (hydrogen, oxygen, and

water activity), and F is Faraday's constant in C/mol. Ulleberg

[91] proposed an empirical equation that incorporates tem-

perature on overpotential to predict cell voltage (Ucell) and

electrolytic voltage.

Ucell ¼Urev þ
�
r1 þ r2:Tel

A

�
:Iþ �S1 þ S2:Tel þ S3:T

2
el

�
:

log

2
664
0
BB@t1 þ t2

Tel
þ t3

T2
el

A

1
CCA:Iþ1

3
775

(3)

where r1; r2 are the Ohmic parameters, A is the electrode's
surface in m2, I is current in A, S (include S1, S2, S3), and t

(include t1, t2, t3) represents the anode and cathode over-

voltage coefficients, respectively.

And

Uel ¼nc:Ucell (4)

where Uel is the electrolysis voltage in volts and nc is the cell

count [90].

Hydrogen production rate ð _nH2Þ depends on ion transport

between electrodes and the electrolysis current.

_nH2
¼ hF:

�
nc:I
n:F

�
(5)

Where _ƞF is Faraday's efficiency that can be expressed be-

tween electrolytic hydrogen production and theory (can see in

equation (6)):
ologies and their modelling for sustainable energy production: A
rogen Energy, https://doi.org/10.1016/j.ijhydene.2023.04.014
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hF ¼

0
BBB@

�
I
A

�
f1 þ

�
I
A

�2
1
CCCA:f2 (6)

where f1 and f2 are the Faraday parameter in mA4cm�4 that

depends on temperature. The values for Faraday parameters

can be seen in Ref. [92]. Khan & Iqbal [92] mentioned that

hydrogen generation is proportionate to current flow and cell

count, per Faraday's law.

In terms of thermalmodels, simple or complicated thermal

models can be used to determine the electrolyte temperature

of an electrolyser. According to the design model by Ulleberg

[91], the thermal energy balance equals:

Ct
dT
dt

¼ _Qgen � _Qloss � _Qcool
_�Qsens (7)

where

_Qgen ¼ hcðUcell �UtnÞI (8)

_Qloss ¼
1
Rt

ðTel �TaÞ (9)

_Qcool ¼Ccw:
�
Tcw;in �Tcw;out

�
(10)

_Qsens ¼
�

_mH2
:cH2

�
:ðTel �TaÞþ

�
_mO2

:cO2

�
:ðTel �TaÞ

þ
�

_mH2O:cH2O

�
:
�
Tel �TH2Oi

�
(11)

where Ct is the overall thermal capacity of the electrolyser in J/
�C, _Qgen is the generated heat in W, _Qloss is the heat loss

transfer to the environment in W, _Qcool is the heat removed

from the apparatus via the cooling system inW, _Qsens includes

the enthalpy leaving the system with the H2 and O2-produced

streams along with the heat transferred from the device to the

incoming deionized water in W, Rt is the overall thermal

resistance of the electrolyser in K/W, Ta is the ambient tem-

perature in K, Ccw is the thermal capacity of the cooling water

in J/K, Tcw;in is the inlet temperature of cooling water, and

Tcw;out is the outlet temperature of the cooling water in K, _mH2,

_mO2, and _mH2O are the mass flow rates of the hydrogen, oxy-

gen, and inlet water respectively (in kg/s), cH2, cO2, cw are the

specific thermal capacities in J/(kg K) of the hydrogen, oxygen,

and inlet water and TH2Oi is the temperature of the entering

water in K.

Polymer electrolyte membrane (PEM) electrolyser modelling

The PEM, also known as solid polymer electrolysis or some-

times referred to as proton exchangemembrane electrolysis is

a technology that is quite promising [86]. The PEM electrolyzer

is composed of a polymermembrane, porous electrodes, and a

polymeric proton exchange membrane (also known as poly-

mer electrolyte membrane) that serves as a solid electrolyte

[87]. The analysis identifies existing models using Scopus-

obtained literatures as described in Fig. 1. In Refs. [85,87],

several models of PEM electrolyzers have been proposed, such
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as the electrochemical, electrical, thermal, mass transfer, and

fluidic models. Electrochemical models link input electricity

to output hydrogen flow. Electrochemical models are central

to modelling electrolysis [93]. The bulk of examined articles

[94] relies on the mathematical formulation of the stack

polarisation curve to determine stack efficiency (i.e. steady-

state electrochemical models). A review of PEM FC models is

available in Ref. [95]. The electrical model is based on the

energy exchange between Gibbs energy and the electric

source, while the heat transfer equation involves entropy,

surrounding temperature, and chemical movement. The

electrical model is determined by an algebraic relationship

between the cell current (I) and voltage (V) at a particular

temperature (T). In contrast, thermal, mass transport, and

fluidic models are designed to describe dynamic behaviour

[85]. The thermal model describes the dynamic temperature

behaviour of the current I and voltage V, which can be referred

to in Ref. [96]. Some of them incorporate a dynamic thermal

model of the stack [97], and/or mass transfer descriptions [98]

to account for the dynamic impact of temperature, pressures/

concentrations on steady-state stack electrical response. Most

commercial electrolysers are current-controlled to maintain

consistent hydrogen generation. The electrical performance

of an electrolyser is based on its polarisation curve, as

demonstrated by Yue et al. [69]. To characterise the electro-

lyser's dynamic interactions, a mole-balancing model and

voltage equation [99] for electrical model had been developed

as shown in equation (12).

V¼Eþ Vact þ Vtrans þ Vohm (12)

Numerous authors have consistently utilised the same

methodology for simulating the cell voltage or an electrolyser.

When analysing a model for an electrolyser, the same equa-

tion (12) is utilised [96]. Upon applying the input voltage to the

PEM cell, several voltages will be dropped. These drops are

distinguished by their open-circuit voltage/reversible drop (E),

activation drop (Vact), mass transfer losses (Vtrans) and Ohmic

losses (Vohm) [96]. The circulation of current through the cell is

dependent on these voltage drops, which are nonlinear

functions of the current. The PEM electrolyser based on the

electric scheme (V) depicted by equation (12) is the sum of

open-circuit voltage/reversible drop (E), activation overvoltage

(Vact), (Vtrans) and (Vohm).

In PEM, it is possible to optimise surface area and expose

more active sites by decreasing particle size and producing

ultrathin structures [100]. This catalyst displayed astonishing

catalytic performance for acidic oxygen evolution reaction

(OER) and outperformed the performance of commercial

Iridium dioxide (IrO2) catalysts. This was possible due to the

ultrafine particle size and uniform dispersion. Xue and his

colleagues [101] were successful in producing an ultrafine

Iridium (Ir) nanocrystal catalyst that was supported by carbon

nano bowls (Ir@HEDP/CNBs). The ultrafine size and homoge-

neous distribution of Ir nanocrystal have a low OER over-

potential of 290 mV at 10 mA cm�2 and outstanding stability,

as shown in Fig. 6(aec). The short-range ordered Ir SA inte-

grated into a Co oxide spinel structure. This Ir SA displayed a

significantly greater acidic OER activity and outstanding sta-

bility, As can be seen in Fig. 6(def) [100,102]. The three-
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Fig. 6 e (a) Synthesis; (b) Transmission electron microscopes image of Ir@HEDP/CNBs; (c) oxygen evolution reaction concert

of Ir/C in 0.1 M HClO4 and Ir@HEDP/CNBs [100]; (d) The synthesis of the Ir SA catalyst in detail; (e) Curves of Linear Sweep

Voltammetry (LSV); (f) the collective action of many different catalysts [102]; (g) A diagrammatic representation of the 3D Or

superstructure combination; (h) performance of oxygen evolution reaction; (i) slopes of Pt/C, 3D Ir superstructure, and Ir NPs,

in HClO4 solution [100].
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dimensional Ir catalyst had a surprisingly low overpotential of

240 mV and fascinating longevity with no voltage drop

(Fig. 6(gei)) [100].

Reversible voltage (E) is also known as open-circuit voltage.

It is theoretical electrolyser voltage assuming losses are

omitted [13]. This results from the chemical Redox reaction.

This equation is derived from Gibb's free energy or the Nernst

equation [96]. These two procedures are the same in theory,

but distinct approaches exist in estimating the temperature-

dependent open-circuit voltage (OCV). The formula details of

the Nernst equation can be found in the articles presented by

Awasthi et al. [98] and Lebbal& Lecoeuche [96]. A fundamental

technique employing Gibb's Free Energy for OCV can be found

in the articles [103]. The second term in equation (12) is the

activation overvoltage (VactÞ. Vact is the voltage loss attribut-

able to triggering the electrochemical reaction and is required

to break molecular bonds. This occurs from proton transfer

and chemical reaction velocity [96]. Temperature, catalyst

material, usage, and loading affect this Vact. Material pro-

cessing, temperature, active catalyst sites, usage, distribution,

age, pressure, morphology, and many other difficult-to-

quantify characteristics [104] all have a role. The activation

overvoltage (VactÞ for an electrolyser can be referred to in

Ref. [104]. The Vact can be applied separately to the anode and

cathode jointly, as in Awasthi et al. [98]. The values used to

exchange current densities for the anode and cathode, tend to

vary widely throughout the literature [105]. The third term in

equation (12) is mass transfer losses, Vtrans, are generated by

flow restriction to the catalyst sites, such as the current col-

lector and separator plate shape, as well as gas bubbles
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formed by the reaction products. The mass transfer losses,

Vtrans can be referred to in Ref. [13], accounting for the vastly

different diffusion rates of hydrogen and oxygen that can be

applied to both the cathode and the anode, respectively. The

ohmic losses (Vohm), are caused by electron flow resistance via

current collectors and separator plates and proton conduction

across the membrane. The use of Ohm's Law is the modelling

approach used by practically all models for this type of loss

[96] can be found in the article [13]. Yue et al. [69]depict the

findings coincide with an equation themodel in equation (12).

The PEM electrolyser's fundamental operating principle is

depicted in Fig. 7(a). To start electrochemical reactions at both

the cathode and anode electrodes, a minimal voltage of 1.23V

is provided across the electrochemical cell. As water particles

have good stability at room temperature, the dissociation of

water into oxygen and hydrogen is quite high [93]. As can be

seen in Fig. 7(b), a single PEMFC is made up of a membrane

electrode assembly (MEA) that is positioned in the middle of

gas diffusion levels and fluid flow plates that have been

machined to include gas channels [106]. The final product

water is moved parallel to the MEA as well as along the gas

lines. In the PEM system, the rate of water consumed and

hydrogen produced should be considered. In this context,

Fig. 7(c) displays the rates of hydrogen production, water

consumption at the anode, andwater transport to the cathode

due to electro-osmosis drag, diffusion, and hydraulic pressure

difference. Dehumidification is therefore required to produce

hydrogen at an acceptable purity [107]. In addition, the total

mass of hydrogen that was produced as well as the corre-

sponding energy is shown in Fig. 7(c), which is based on the
ologies and their modelling for sustainable energy production: A
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Fig. 7 e PEM Electrolysis System; (a) A simplified diagram of the PEM type of water electrolyzer cell [93]; (b) The internal

water transfer process of Polymer electrolyte membrane fuel cells (PEMFCs) [106]; (c) The rate of hydrogen production, the

rate of anode water consumption, and the rate of water transferred to the cathode [107]; and (d) the total amount of

hydrogen that was generated as well as the energy that was equivalent to that amount due to its higher heating value [107].

i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( x x x x ) x x x14
higher heating value of hydrogen. This is an indication of the

total quantity of energy that could be generated if a fuel cell

were to be utilised to convert the hydrogen into electricity

[107].

Recent research on PEM water electrolysis has been con-

ducted using various methodologies and applications. Abdin

et al. [32] presented an enhanced PEM electrolyser model

based on interconnected modular mathematical models. The

model is an effective resource for investigating control stra-

tegies. The suggested model can predict cellular response

under a variety of steady-state situations. Aouali et al. [87]

developed a novel (mathematical) graphical model design for

the PEM-ELS for hydrogen production based on electro-

chemical, thermodynamical, and thermal equations. Using a

lab-scale electrolyser, the model is experimentally validated.

According to the findings, modelling results and lab-scale

experimental data demonstrated adequate compatibility.

Mohamed et al. [108] modelled PEM (dynamic model) with

solar cells to identify variables that can influence the rate of

hydrogen and oxygen production. Different physical equa-

tions, such as NernstePlanck, andNernsteEinstein, have been

utilised to perform the simulation in MATLAB. This type of

PEM is suitable for arid regions (Adrar) with high temperatures
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and solar radiation. Tijani & Rahim [109] modelled a PEM

water electrolysis to examine the effects of temperature,

pressure, and membrane thickness on cell efficiency. A

sensitivity analysis using polarisation curves was performed

at various operating pressures to evaluate the PEM electro-

lyser's characteristics and operating conditions. This study

suggests the PEM electrolyser with 1 bar balancing pressure is

the most efficient. Ruuskanen et al. [110] presented a Power-

electronics-based power-hardware-in-loop (PHIL) simulator

for a PEM water electrolyser system on an industrial scale.

Comparing the current and estimated hydrogen generation of

the PHIL simulator with the measured values of the com-

mercial PEM electrolyser after measuring the solar PV system

output power verifies the model.

A nominal current of 405 A is attained to examine the

electrolyser as part of a smart grid and evaluate the electronic

performance of various power suppliers. Guilbert & Vitale

[111] provide a dynamic electrical model for PEM electrolysis.

Themodel is based on an analogous dynamic electrical model

that considers the PEM electrolyser's dynamic behaviour

during abrupt input current changes. Experiments validate

the model. Results accurately replicate the electrolyser's dy-

namic behaviour. Espinosa-Lopez [112] presents the
ologies and their modelling for sustainable energy production: A
rogen Energy, https://doi.org/10.1016/j.ijhydene.2023.04.014

https://doi.org/10.1016/j.ijhydene.2023.04.014


Fig. 8 e Schematic of solar-powered AEL. Solar radiation is

converted to power through PV panels. Implementing a

DC/DC power converter is necessary, as both direct and

indirect coupling are conceivable [70].
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modelling and experimental validation of the 46 kW PEM

high-pressure water electrolyser deployed on the MYRTE

platform, a real-scale demonstrator that studies the use of

hydrogen to store intermittent RE. Particle Swarm Optimisa-

tion is utilised to discover electrochemical sub-model pa-

rameters, and a MATLAB-Simulink connected modular

mathematical model is built for validation. Even in transitory

operation periods, the stack voltage and temperature can be

expected within 20e60 C and 15e35 bar. The model can pre-

dict a real-scale electrolyser's voltage and temperature evo-

lution with the highest nominal power consumption

documented in PEMWEmodelling literature. The approach for

identifying parameters can be applied to any PEM water

electrolyser. Hernandez-Gomez [113] proposed and tested a

static-dynamic model of a 400W PEM electrolyser. Each cell's
mathematical model has adaptable parameters by running

dynamic tests at varied input currents. The model's parame-

ters are modified to the input current to replicate the elec-

trolyser's actual performance better. This work can be used to

construct a real-time PEM electrolyser emulator for hardware-

in-the-loop testing of RES power electronics. Khelfaoui et al.

[114] presented solar PV/PEM water electrolytes system per-

formance in Algeria's Sahara. Modelling steps include

parameter estimates and using those parameters to estimate

solar PV module behaviour under varied temperatures and

solar irradiation circumstances. The results indicated a high

hydrogen generation of 284 L in one day for 8 h of running and

an electrolyser power efficiency of 18e40%.

Alkaline water electrolysis (AEL) modelling

Alkaline water electrolysis (AEL) to produce hydrogen is now a

mature, cost-effective, and long-lasting technique that has

been widely employed in Chlor-alkali chemical industries for

more than a hundred years [115]. AEL is considered a mature

technology for any of these uses, and they are often directly

connected to the grid to generate hydrogen within their

nominal working range [116]. These low-temperature

methods are mature relative to high-temperature electrol-

ysis [117]. Traditional AEL uses aqueous solutions ofwater and

20e30 wt% potassium hydroxide (KOH) due to the excellent

conductivity and corrosion resistance of stainless steel in this

concentration range. NaOH, NaCl, and other electrolytes are

also used. Liquid electrolyte conducts ions between elec-

trodes. Literature has introduced alkaline technology depen-

dent on an acidic electrolyte, emphasising the hydrogen

evolution reaction performance to produce efficient, stable,

and hydrogen evolution catalysts [118]. This technique has the

benefit that the electrodes are composed of inexpensive cat-

alysts such as cobalt, nickel, or iron. In addition, it has great

gas purity and durability [119]. New commercial AEL operate

at 100e400 mA cm�2 for current densities [117]. These devices

can produce up to 99% pure hydrogen with an efficiency of

62e82% (refer to Table 2) [120]. Some technical information

regarding AEL manufactured by Siemens, Hydrotechnik,

McPhy Energy, ITM Power, and PERIC was reported in the

commercial sector [121].

Recently, multiple review articles on PEM electrolysers

have been published. On the other hand, there are a few re-

views for AEL [122]. This work reviews AEL modelling from an
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electrical domain perspective. Since AEL performance is

highly linked to electrolyte conductivity, their modelling ac-

cording to temperature and KOHorNaOHmass fraction is also

studied. It reveals the remaining modelling concerns. Elec-

trolyser modelling is critical for simulating their performance

in static and dynamic settings when connected to WTs, PV

panels, and power grids. Electrolysers are managed by AC-DC

and DC-DC converters (as seen in Fig. 8). Modelling electro-

lysers assists in creating fit, robust, efficient controllers to

optimise energy efficiency. Finally, modelling helps design

AEL to maximise energy efficiency [123].

According to Gambou et al. [122], less modelling research

has been conducted on AEL than on PEM electrolysers. This

discrepancy is due to the advantages of PEM electrolysers that

have a higher current density, require less maintenance, and

have a larger partial load range than AEL. The majority of

research was on electrical domain modelling to build AEL

modelling. AEL modelling can be divided into major cate-

gories: static modelling (including semi-empirical and

empirical) and dynamic modelling. Multiple empirical math-

ematical equations have been utilised to construct a compli-

cated model that can store the most excess RES energy [91].

Numerous semi-empirical formulae have been used to

predict the electrolyser operation using the current-voltage

curve for AEL [124]. Ulleberg [91] initially conceived one of

the most prevalent semi-empirical models. The system in-

corporates kinetics, thermodynamics, and electrolyser resis-

tance. Equation (5) refers to the equation form of the current-

voltage curve. To improve the performance of the semi-

empirical model of the AEL: temperature (t) [125], gas pres-

sure P (bar) [70], the distance electrode-diaphragm d (mm)

[126], and the electrolyte molarity concentration M (mol L�1)

[122] can be considered. According to Sanchez et al. [125], AEL

performance is strongly temperature-dependent. Sanchez

et al. [125] utilised a semi-empirical mathematical model for

forecasting the electrochemical behaviour of an alkaline

water electrolysis (AWE) system based on Faraday efficiency

and polarisation curve as a function of current density under

different operating temperatures and pressure. MATLAB was

used to calculate the model's parameters based on non-

linearly regressed experimental data from a 15-kW alkaline

test system. In semi-empirical models based on the previous

method, experimental results were compared to the model
ologies and their modelling for sustainable energy production: A
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using a numerical regression method based on least square

methods. Hence, the values of semi-empirical models differ

from those previously published in the article [122].

For empirical formula, an electrical expression of the cell

voltage, comprising the various voltages, is described by

equation (13):

Vcell ¼EþðRa þRc þRele þRmemÞ:iel þhact;a þ hact;c (13)

Where E is the reversible voltage, Ra and Rc are electrode

ohmic resistances (anode and cathode), respectively, Rele in-

dicates ohmic electrolyte loss, Rmem is membrane ohmic

resistance, ƞact;a and ƞact;c are the anode and cathode activation

overvoltage. The ButlereVolmer equations (or Tafel's ap-

proximations) can be used to compute the anode and cathode

activation overvoltage for water electrolysis [127]. This

empirical model determines the configuration of the electro-

lyser during the experiment to give datasets by simply

considering the operating temperature. During operation, the

electrolyser's state varies. Variations in bubbling rate, elec-

trolyte concentration, and pressure are not considered. The

empirical model's accuracy depends on the number of mea-

surements used to construct the analytical correlation [124].

Dynamic AEL modelling has received fewer studies than

static modelling. Like static modelling, dynamic modelling

requires experimental measurements to compute the param-

eters strongly influenced by gas pressure, temperature, and

current [122]. As previously mentioned by Hernandez Gomez

[113], electrolyser behaviour strongly depends on operational

conditions. The model's parameters must be flexible to accu-

rately recreate the electrolyser's behaviour under operating

conditions. Different modelling methodologies, such as

regression analysis, can be used to assess the model's param-

eters based on the equivalent electrical circuit and experi-

mental data [128]. This methodology allows decent fitting, but

genetic or LevenbergeMarquardt algorithms are also prom-

ising [122]. The essential benefit of dynamicmodelling against

staticmodelling is its ability to reliably reproduce the dynamic

behaviour of AEL, whether powered by WTs or solar panels

[113]. Taking into account current, temperature, and gas

pressure increases modelling reliability. This modelling is a

strong tool for developing efficient, resilient, and adequate

controllers for dynamic operating circumstances [129].

Solid oxide electrolyser (SOE) modelling

SOEC is a promising candidate technology for achieving sus-

tainable development [20]. SOE electrolysis provides remark-

able efficiency, approaching 70e80%. SOE technology can

boost the efficiency of water electrolysis by employing high

operating temperatures, typically between 700 and 1000 �C.
Consequently, SOE is steam electrolysis. In the late 1960s,

pioneering work was conducted on SOE technology [67].

However, such high temperatures accelerate the deterioration

of cell components, restricting SOE electrolysis in the research

(demonstration) and development phase (see Table 2). Since

the use of high-temperature heat minimises their electricity

consumption, they have significant potential [67].

SO electrolysis technology has been the subject of study

and development for more than four years, but there are few

publications on the modelling of their functioning in both
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stationary and transient conditions [130]. Numerous research

groups have researched the characterization andmodelling of

SOE, albeit not asmany have studied AEL or PEM electrolysers,

as this technology is still in the R&D phase [116]. Due to

analogous mechanisms, such as gas diffusion and electro-

chemical behaviour, the majority of SOE numerical tools are

based on SOFC mathematical approaches. In this section, an

attempt is made to organise and review previous SOEC

modelling work. The two most prominent forms of models,

micro- and macro-level models, are described for the SOE

model [20]. However, micro-level SOEC modelling is quite

limited. It is reviewed work that is relevant to the SOFC effort

[20]. Microscalemodelling is recognised as an efficientmethod

for elucidating the interaction mechanism between reactants

and catalytic surfaces. It provides guidelines for creating and

optimising the material configuration of catalysts [131].

Additionally, it is important to evaluate multiscale modelling

research to fully grasp SOECmodelling by introducing diverse

modelling methodologies [131].

Faraday's law, Butler-Volmer equation, Ohm's law, and gas

transport equations are used in a macro-model simulation.

According to Faraday's law, the applied current is proportional

to the passage of oxygen ions through the electrolyte. The loss

associated with the flow of oxygen ions in the electrodes on

both sides of the electrolyte is described by Ohm's law (often

with assumed electrolyte thickness). Most people assume

electrodeshavevery lowelectrical resistance; therefore,Ohm's
law only applies to the electrolyte phase. On each electrode,

the Butler-Volmer equation represents the rise in potential

(overpotential) required to trigger the reaction. The decline in

performance is linked to concentration gradients across the

electrode gas channel and the triple-phase border by the gas

transport rule (often with an assumed electrode thickness).

The dusty gas model has been proven to be the best appro-

priatemodel formodelling the gas diffusion process and is the

most extensively used model. Fick's law and Maxwell-law

Stefan's are two other commonly used models [20].

Most SOEC models describe limiting processes using

overpotentials. This terminology comes from electrochem-

istry and represents entropy production in thermodynamic

terms. It includes concentration overpotentials in both elec-

trodes and activation overpotentials in both electrodes. All

other overpotentials are operating-condition-dependent [20].

In this procedure, the actual cell voltage is influenced by

several overpotentials. These overpotentials are ohmic, acti-

vation and concentration overpotentials can be found in

Ref. [132]. Motylinski et al. [130] proposed methodology was

validated and calibrated using experimental data, resulting in

a prediction error of less than 5%. An article published by

Daneshpour & Mehrpooya [133] presents the cell parameters

calculation that utilises assumptions and the necessary data

for cell voltage consumption. Additionally, Stempien et al.

[134] evaluated the SOEC coupled with ex-situ methane syn-

thesis reactor modelling by comparing the outcome to

experimental data. A simple, single-pass systemwithout heat

recovery potentially achieves an overall energy efficiency of

60.87% (based on a lower heating value), an electrical energy

efficiency of 81.08% (based on a lower heating value), and 1.52

Nm3h�1m�2 of electrolyser methane production. The pro-

posed technology can convert 100% of collected CO2.
ologies and their modelling for sustainable energy production: A
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Several reviews have explored the micro-level for SOE,

which this section of the study will discuss. Chan et al. [135]

modelled ion-conducting electrolytes for SOFC and SOEC. The

model potentially relates to free electron and electron-hole

concentrations. Temperature, oxygen partial pressure, and

electrolyte thickness affect oxygen permeability. Later, per-

meability's effect on SOC was examined (Solid Oxide Cell). On

one side of the electrolyte, gas combinations were tested.

Grondin et al. [136] modelled the electrochemical process of

SOEC's porous cathode utilising an artificial neural network

(ANN). The expression takesmicroscale variables into account

in the macroscale model with minimal calculation time. The

ANN utilised three inputs of overpotential, water concentra-

tion, and hydrogen concentration to determine the cell's cur-

rent density. Artificial intelligence (AI)-based optimisation

method in SOE may enhance its capacity to process and

analyse massive volumes of data rapidly and precisely. Uti-

lising artificial intelligence-based optimisation may reduce

pollution, boost energy efficiency, and optimise resource use

for industries [137]. Shi et al. [138] studied CO2 decrease in

SOEC. They created a one-dimensional model that includes

heterogeneous processes, electrochemical kinetics, electrode

microstructure, mass transport, and charge transfer. Experi-

mental data validated themodel and showed good agreement.

Carbon deposition at the electrode/electrolyte contact was

also identified. Using simulations, they optimised electrode

design. Another micro-modelling research related to SOFC is

conducted by Ni et al. [139].

In numerous studies, SOC performance, the electrolyser

model, and system-level analysis are discussed. Prior research

in the field was studied to determine the operational envelope

of SOE. Wang et al. [25] studied the functionality of micro-

tubular SOE cells. A cell with a diameter of 1.8 mm and an

active area of 1.74 cm2 was tested at 650 �C with three con-

centrations of steam: 12, 36, and 60%. The maximum SOEC

performance was 1.32 V at 0.57 A/cm2. The efficiency of a

300 N m3h�1 hydrogen generation system was determined

using this cell's electrolytic properties. Due to the significant

thermal energy recovery from the exhaust gas, the system

efficiency reached 98%. Penchini et al. [140] report an experi-

ment on hydrogen production utilising a 200 W SOE stack at

0e0.5 A/cm2 current density. The tests were run at 700 �C,
750 �C, and 800 �C with steam inflow concentrations from 50%

to 90% and water usage up to 70%. The greatest current den-

sity at 700 �C was 0.375 A/cm2, and the voltage was 1.49 V.

Chen et al. [141] presented an impregnated electrode solid

oxide electrolysis cell (SOEC). Four distinct temperature levels

(650 �C, 700 �C, 750 �C, and 800 �C) and a 50:50H2: H2O mixture

ratio were tested. At 750 �C, an electrolysis current of 1.7 A cm2

and a hydrogen generation rate of 710.6 mL cm2 h1 were

reached using an electrolysis voltage of 1.3 V and a steam

content of 70%. Schefold [142] utilised an electrolyte-

supported SOC of 45 cm2 area that was operated in the

steam-electrolysis mode for more than 23,000 h before the

scheduled shutdown. The decrease of cell voltage was to be

7.4 mV/1000 h (0.57%/1000 h). Fang et al. [143] test a two-layer

SOFC for 20,000 h. Long-term electrolysis operations were

conducted at 700 �C, 750 �C, and 800 �C with a current density

of 0.5 Acm2 and a 50% steam conversion rate, with 50% hu-

midified H2. The analysis estimated voltage and ASR
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degradation over time. During the experiments, it was deter-

mined that voltage deterioration varies between 0 and 2% per

1000 h and that ASR degradation varies between 0.6 and 11.3%

per 1000 h. Daneshpour et al. [133] present a solar-TPV device

with a SOEC to produce hydrogen. Mathematical and elec-

trochemical modelling of subsystems is performed, and sys-

tem performance in different operating situations, such as

current density, temperature, and SOEC steam mole fraction,

is examined. The scaled-up STPV gadget obtained 17% effi-

ciency. The suggested system can produce 7458 kg/h of

hydrogen with 54% SOEC efficiency, according to sensitivity

analysis. The proposed cumulative system efficiency is 34%.

Comparison between AEL and PEM modelling

As seen in Table 2, the commercialization of AWE, PEM elec-

trolysis, and SOEC technologies are at various levels. As pre-

viously stated, the SOEC is currently being developed in the

laboratory. AWE and PEM technologies, which are more

developed, have already reached the commercialization stage

[119]. As demonstrated in Table 2, PEM electrolysers produce

more pure hydrogen and can attain higher current densities

than AWE without sacrificing efficiency [144] due to the

tightly-packed MEA and thinner membrane [145]. Their

operating range is wider [119]. PEMhas greater costs and lower

stack and system lifetimes than AWE [25]. The pricey PEM has

a short lifespan, requiring replacing. Membrane contamina-

tion or chemical self-degradation and anode deterioration

cause PEM's limited lifespan. In AWE, non-noble metals like

nickel (Ni) are acceptable electrocatalysts for hydrogen eval-

uation reaction (HER) and OER, but in PEM electrolysis, the

acidic electrolyte requires valuable metals as electrocatalysts,

which raises investment [146].

Several authors have compared both technologies; AWE

and PEM. Felgenhauer et al. [121] compared 16 models devel-

oped by different manufacturers and examined AWE and PEM

technologies for scalability, production capacity, and H2 pro-

duction costs. PEM electrolysers have a minor efficiency

advantage over AW electrolysers (57e64% lower heating

value) but degrade more quickly. They observed that system

capacity increases cost efficiency, indicating scale economies.

AWE systems are mature and cost-effective. Lower expenses

offset PEM's considerably higher efficiency. Schalenbach et al.

[147] compared an AWE electrolyser with Ni-based catalysts

and a thinner separator to a PEM electrolyser with Iridium and

Platinum-based catalysts and a Nafion membrane. The au-

thors concluded that the AWE model with a thinner-than-

usual separator could achieve higher efficiency than PEM

electrolysis with a Nafionmembrane. In addition, the authors

examine the difficulties associated with both AWE and PEM.

According to Gotz et al. [45], AEL electrolysers can be operated

between 20% and 100% of design capacity, with overdrive up

to 150%. This provides AEL with an excellent alternative for

PtG equipment with an unpredictable power source. As per

[45], an AEL predicted lifetime is 30 years (see Table 2), which

is high compared to other types. AEL's efficiency and overall

investment have improved in recent years. Concerning opti-

misation technology, it must not disregard (economic) re-

alities [148]. For instance, in countries with developed

economies and huge populations (such as Australia), it may
ologies and their modelling for sustainable energy production: A
rogen Energy, https://doi.org/10.1016/j.ijhydene.2023.04.014

https://doi.org/10.1016/j.ijhydene.2023.04.014


i n t e r n a t i o n a l j o u r n a l o f h y d r o g e n en e r g y x x x ( x x x x ) x x x18
take a considerable amount of time to promote and optimise

the commercialization of the electrolysis project. Saudi Arabia

is affluent economically but politically turbulent, hence this

country will take longer to commercialize the electrolysis

project. Thus, the governmentmust raise investment to attain

the desired outcome within an acceptable timeframe [149].
Fig. 9 e A schematic representation of the hysteresis band

[157,159].
Hydrogen electrolyser control strategies, the
technology of electrolyser, storage, and
utilization

Hydrogen can be stored, transformed into methane, and re-

generated into energy [150]. Hydrogen production, co-

electrolysis, bioenergy hydrogenation, and other processes

mayproduce transport fuel [151]. Researchers recently focused

on blending fuels with biofuel in varying quantities to

dramatically minimise emissions of greenhouse gases [152].

Hydrogen and electricity can enable the transport sector to

become less oil-dependent by expanding its primary energy

sources. Effectivemodelsof the completeelectrolyser (cell plus

stability elements, including thermal management and con-

trols) are necessary when coupled directly to a renewable en-

ergy source, due to intermittent and variable supply [32]. A

control system to manage energy is required to run, integrate,

and interconnect components in a generation system, assur-

ing safe operation and desired outcomes. An appropriate en-

ergymanagement (EMAN)strategyallows the systemtosupply

demand, increase element lifetime, minimise operating costs,

and maximise system performance, which is technically and

economically feasible [153]. Various management strategies

affect the behaviour of the system.Most scientific publications

propose simulated techniques for hydrogen energy systems to

maintain demand, including technical and economic optimi-

sation criteria and many real-world concerns, such as

hydrogen equipment degradation or energy vector manage-

ment. Scopus-based literature searches using the terms

"hydrogen electrolyser," "control strategy," and "sustainable

energy"wasperformed to identifyhydrogen systemstrategies.

Here, we define important hydrogen system strategies.

AC microgrid control involves frequency and voltage. Ef-

forts have been made concentrated on droop control

[154e156] for parallel operation of converters since individual

generators can be controlled simultaneouslywith one another

and the gridwithout the need for direct communication [45]. It

is utilised in distributed control systems for power-sharing

[154]. Various control strategies can be layered together to

obtain optimal system performance. For example, Sun et al.

[154] introduced the frequency-based PV/battery/FC-electro-

lyser hybrid system as voltage sources with modified droop

control. The battery inverter adjusts the droop coefficient

based on droop control to balance SOC while charging and

discharging. The FC-electrolyser supplies inadequate system

energy or absorbs redundant system energy for safe and

steady operation. Veerakumar et al. [155] implemented a

combined droop and derivative-based fast active power

regulation controller on a 300 MW PEM electrolyser. This re-

sults in a safer andmore rapid adjustment of the active power

utilised by the megawatt-scale PEM electrolyser, so aiding

quickly and efficiently in limiting the dynamic frequency
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response during the first few seconds following the emer-

gence of an active power imbalance. As presented by Quan

et al. [156], the VeA characteristics of both FC and electrolyser

can be considered as an offset voltage in series with a voltage

droop. The increase will be advantageous for the following

control design.

The "hysteresis band control" is the simplest and most

effective delivery method for the energy management of

power to power; The electrolyser is triggered if RE production is

larger than electricity consumption, and the FC system dis-

tributes power if electricity demand exceeds RE supply [45].

The hysteresis band control method can be adapted for each

purpose by utilising several operational parameters. For PtP

systems, theFCandelectrolyser canoperateatfixedorvariable

power tomatchdemand.Modifying thehysteresis band for PtG

andhydrogen refuellingmaximiseshydrogengeneration [157].

This prevents the battery from being entirely depleted or

overworked. Batteries can support stationary FC systems'
steady or rated power modes. The FC can function at peak ef-

ficiency with battery backup, minimising hydrogen use [158].

As demonstrated by Valverde et al. [157] and Uleberg [159],

Fig. 9 displays a schematic representation of the hysteresis

band. Literature [160e162] utilises hysteresis operation mode

governed by battery SOC. The hysteresis bandwidth is fixed

and depicted by a simple flow chart, despite being an

improvement in degradation. Storage system utilization can

be improved.

Table 3 summarises the main controller strategy based on

the control algorithm based on evaluation publications using

Scopus. The main distinction between the different solutions

presented in Table 3 is based on design control, optimisation

objectives, electrolyser technology, and storage configuration

to resolve the challengewith the hydrogen ES system. Optimal

control overcomes concerns found after years of operating

hydrogen energy systems [45]. In general, the papers cover

methods and systems such as MILP model [163e166], MPC

[167e169], PSO [170,171], PI [172,173], GA [174,175], HOMER

[176e178] and FLC [179e181].

Mixed integer linear programming (MILP) is frequently

used for hydrogen electrolyser networks. Samsatli et al. [163]

use MILP to optimise wind-hydrogen-electricity networks.

Themodel determines the appropriate number, size, location,

whether to transfer energy as electricity or hydrogen, trans-

mission network structure, hourly operation of each tech-

nology, etc. Hydrogen-electric networks can cover all of

Britain's transport needs by the on-shorewind.Maroufmashat
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Table 3 e Summary of the controller algorithm strategy based on optimisation objectives, the technology of electrolyser,
and storage configuration of the hydrogen-based-energy system for evaluation articles using Scopus.

Reference Control algorithm Optimisation objectives Technology of electrolyser Storage configuration

[163e166] MILP � Cost reduction [163e166]

� Ensure demand [163e165]

� Increase lifetime [165,166]

� Improve performance [166]

� CAPEX [163]

� AEL [164,166]

� H2 [163e166]

� Battery: H2 [166]

[167e169] MPC � Cost reduction [167]

� Ensure demand [167e169]

� Increase lifetime [168]

� Improve performance [167,168]

� PEM electrolyser [167e169] � H2 [167e169]Battery: H2 [168]

[170,171] PSO � Cost reduction [170,171]

� Increase lifetime [171]

� Improve performance [170,171]

� PV-EL [170]

� Alkaline and PEM electrolyser [171]

� H2 [170]

� Battery: H2 [171]

[172,173] PI � Cost reduction [173]

� Ensure demand [173]

� Improve performance [172,173]

� HAE electrolyser [172]

� PEM [173]

� H2 [173]

� Battery: H2 [172]

[174,175] GA � Cost reduction [174]

� Improve performance [174,175]

� AEL [174,175] � H2 [174,175]

[176e178] HOMER � Cost reduction [176e178]

� Ensure demand [176,177]

� Increase lifetime [177,178]

� Improve performance [177,178]

� Alkaline and PEM electrolyser [176]

� PEM electrolyser [177,178]

� H2 [177]

� Battery:H2 [176,178]

[179e181] FLC � Cost reduction [179]

� Ensure demand [180,181]

� Increase lifetime [180]

� Improve performance [179e181]

� PEM [179,181] � H2 [179,181]

� Battery: H2 [180]
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et al. [164] use MILP to demonstrate a distributed hydrogen

energy generation system in an innovative urban energy

system. The aim function optimises network operations and

maintenance costs and hydrogen refuelling station capital

costs. Their evaluation shows that distributed hydrogen gen-

eration is environmentally and economically preferable to H2

delivery. Mukherjee et al. [165] employ MILP to size and

operate microgrid renewable energy sources, hydrogen stor-

age and production (electrolysers), and fuel cell systems. MILP

subject requires a 2000 kW renewable energy system (400 kW

solar PV and 1600 kW WT), in which the backup fuel cell

system size rises to 4000 kW if vehicle-to-grid services are not

used in the MG. The study highlights the environmental

emission offsets and economic benefits of using FCs in an MG

with microturbines and PV as RE sources. Gillessen et al. [166]

utilised MILP to minimise total system expenses. A case study

for a hybrid ELS/battery system directly coupled with a big PV

power plant without a grid connection.

Particle swarm optimisation (PSO) was used in Refs.

[170,171] to optimise the electrolyser system. PSO is one of the

most often used techniques for determining the optimal

design of renewable power plants due to its high performance

and durability [171]. According to Sayedin et al. [170], the PSO

approach for water electrolyser offers more flexibility, but

higher prices and complexity. PSO is a swarm-based optimi-

sation approach [170]. This paper [170] explains how the PSO

algorithm optimises the ELS system to reduce energy loss. For

the given location and PV module, the PV/ELS system may

reach 97.83% energy transfer efficiency and less than 7.67 kWh

yearly energy loss. In Ref. [171], PSO was utilised to discover

component sizes that minimised the Levelized cost of energy

(LCOE) while retaining off-grid energy. Hydrogen can prevent
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oversizing battery and PV systems, reducing the P2P system's
final cost.

Proportional Integral (PI) and the Proportional Integral plus

(PIþ) controllers are conceived and implemented in the

Hydrogen generative Aqua Electrolyser (HAE) power system

[172]. PI þ simulation findings show a better transient and

steady-state response for interconnected power systems

[172]. In Ref. [173], the PI controller reacts to frequency devi-

ation and gives the current controller's reference signal. PI

controller shows that the PEM electrolyser's quick dynamics

allow significant flexibility. A genetic algorithm (GA) is a

simple, efficient optimisation method based on evolution.

Several works indicate that PSO is as efficient as GA but con-

verges faster. A micro-GA that determines the global least

total annualised system cost for optimal storage [174]. They

designed and optimised a net CPV-Hydrogen system for

standalone operation. The study proposed in Ref. [159] has

used GA for photovoltaic-AEL to demonstrate the best

approach for a 10 kW electrolyser.

The hybrid Optimisation Model for Electric Renewables

(HOMER) is one of the most useful optimisation tools used to

optimise RESehydrogen energy system structure [176,177]

and to acquire feasible MG configurations and the net present

cost of each feasible system [178]. Research [176] uses the

HOMER model for optimisation tools in off-grid and grid-

connected hybrid renewable energy systems (HRES). The

simulation in Ref. [177] showed that the phase change mate-

rial (PCM)-based thermal management technology presented

can store heat produced during charging and dissipate it

during hydrogen discharge. A numerical model in HOMER

[178] was used to identify novel, technically feasible MG con-

figurations for the hut.
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Themajor components of FLC have been divided into three

parts. Initially, inputmembership functions are used to fuzzify

the inputs. Then, outputs are generated based on inference

rules. Finally, the defuzzified fuzzy outputs are applied to the

primary control system. FLC has several benefits: simplicity,

adaptability to any problem, and the capacity to solve prob-

lemswithout data or information [182]. FLC controls the water

entering the electrolyser to improvehybrid PV-PEMELS system

efficiency [179]. The overall system efficiencywas significantly

enhanced in the case of proper temperature control via the

proposed FLC approach [179]. FLC-based power management

was used in Ref. [180] to achieve persistent off-grid electrical

energy independence. Fuzzy-based power management sys-

tem [181] assures the intended performance based on the

unpredictability of the future load and control strategy.

According to Parra et al. [12], among optimum control

systems, MPC has lately acquired popularity due to its ca-

pacity to accommodate technical restrictions (e.g. power

limits, ramp-ups, etc.). This is significant for preserving sen-

sitive equipment (e.g., electrolyser and/or FC systems) while

minimising system costs for storage and increasing overall

revenue [167]. Also, Fischer et al. [167] demonstrated that MPC

boosts electrolyser profitability and performance. According

to Fischer et al. [169], operating an electrolyser and feed-in

plant based on rapidly changing set values necessitates a

highly dynamic MPC-controlled system. It was proved that

MPC is well-suited for operating such plants in the context of

energy network limits and changing boundary circumstances,

such as time-varying electricity prices. Serna et al. [183]

developed another MPC. This study aimed to ensure wind and

wave turbine hydrogen generation and electrolyser function-

ality. They created a Mixed Integer Quadratic Programming

solution for MPC with naive predictions to accomplish the

objective. Torreglosa et al. [184] used predictive control to in-

crease the performance of a RES with hydrogen storage. MPC

enhanced FC and electrolyser efficiency by determining

optimal operating points. All of these publications
Table 4 e The objectives in cost reduction based on the optim

Reference & years Control
algorithm

Objectives for c

Samsatli et al. (2015) [147] MILP Efficiency and unit c

technology (capital,

maintenance costs).

Maroufmashat et al. (2016) [148] MILP To optimise network

maintenance, and h

station capital costs

Mukherjee et al. (2017) [149] MILP Incorporating FCs in

on annual operation

Gillessen et al. (2017) [150] MILP to minimise hybrid

battery costs

Marocco et al. (2021) [151] PSO Minimising the final

generated through t

Samani et al. (2020) [157] PI Capital costs and op

were analysed in the

electrolyser

Burhan et al. (2016) [158] GA To minimise the tot

the system.
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[167,169,183,184] indicate model predictive control's practi-

cality for RES with hydrogen storage.

Table 3 also displays the objectives related to cost reduc-

tion, ensuring demand, increasing the lifetime, and enhancing

the system performance. It shows that cost reduction and

system performance improvement are the major goals of the

optimisation strategy for the evaluation papers. According to

Ref. [173], the electrolyser and fuel cell system has a 10-year

lifespan and must be replaced after 10 years. The costs

involved in hydrogen electrolyser technologies include the

replacement cost for FC and ELS modules, annual operating

and maintenance costs, total capital investment costs, etc

[165]. Hence, It is crucial to analyse how the network configu-

rations affect performance and costs [147]. In summary, the

discussion on cost reduction and objectives based on the

optimisation of hydrogen electrolyser technologies finds the

following points in the literature shown in Table 4.

The controller performance has been reviewed in thewater

electrolyser system (see Table 3) reference

[167,168,170,171,174,177]. The controller performance to be

utilised in a power-to-gas (P2G) plant, for example, includes

full load hours, hydrogen feed-in, self-consumption, and

relative control error [167]. Nguyen et al. [177] employ HOMER

to assess ESS performance, including load profiles, technical

performance and component characteristics, climate data in

solar radiation and economic performance. Study [168] ach-

ieves a superior performance objective usingmodel predictive

control and can be used to improve MG sizing. Their simula-

tions reveal a 76% drop in the station's default time and a

better fill rate for the hydrogen tank and batteries, chemical

and electrical losses are reduced by 38% and 11%, respectively,

while battery deterioration is reduced by 1%. Article [170] il-

lustrates system performance depends on the design and

operating parameters utilised by the PSO algorithm to mini-

mise the energy loss of the PV/EL system. The optimisation

process starts at Eloss ¼ 8.46 kWh/yr and continues until

Eloss ¼ 7.67 kWh/yr. The study's performance data on
isation of hydrogen electrolyser technologies.

ost reductions Outcome

osts of each

operating, and

� Using existing wind turbines reduces the net-

work's total cost by 7%, despite the turbines'
22% lower cost.

operations,

ydrogen refuelling

� The average daily strike price of grid-purchased

power for electrolyser ¼ $0.036 per kWh.

� Levelized cost of hydrogen produced through

the hydrogen fueling station ¼ $6.74 per kg.

to an MG to save

expenses

� The fair system cost in Canada ($41.2 Million)

due to the population size.

electrolyser/ � Average costs of hydrogen for a 3000 kWel

electrolyser system (0.057e0.308 V2015/kWhH2)

cost of electricity

he P2P system

� The LCOE hybrid storage configuration with Li-

ion batteries and alkaline electrolysers costs

0.51 V/kWh.

erational costs

large-scale

� The economic approach earns 770 kV/year

(main reserve) and 970 kV/year (hydrogen sale).

al annual cost of � Finds the global minimal annualised system

cost. The cost data represents in Ref. [174].
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hydrogen production in an electrolyser employing amicro-GA

can be useful for long-term component design because it

shows how system performance varies during various

weather situations [174]. Other studies relating to the perfor-

mance characteristics of the hydrogen storage system are

referenced in these articles [178e181].

As shown in Table 3, the majority of systems use PEM elec-

trolysers for their electrolysers. This is due to the PEM electro-

lyser operating at a greater current density (hydrogen output

per unit of the active region), resulting in a more compacted

stack than alkaline [171]. However, AEL is considered a

hydrogen production technology. The AEL technology is more

mature thanother technologies, and themajority of large-scale

systems that have been implemented are based on this tech-

nology. The benefits of AEL technology are its availability for

huge plant capacities, low costs, and long lifetime. Moreover,

research-based electrochemical models for electrolyser (alka-

line and PEM) and PEM fuel cell devices have been constructed

[171] toaccuratelydescribe theirnormallynonlinearbehaviour.

In terms of storage, Table 3 reveals that the majority of

reported systems store hydrogen. Hydrogen is a versatile ES

medium that may be utilised for short- and long-term storage

and converted to power, heat, and transport fuel [164]. There

are three major properties of storage technologies [163]:

maximum available capacity, injectability (the highest rate at

which gas can be pumped into storage), and deliverability (the

maximum rate at which gas can be extracted from storage).

The studies [163e181] concluded that integrating electrolysers

with hydrogen storage devices yields beneficial outcomes in a

high-efficiency energy route, hydrogen production and stor-

age is possible with low-cost power.

In grid-connected topologies, the grid is an active compo-

nent that maintains the balance of power by absorbing or
Fig. 10 e Hydrogen applications road
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delivering energy when the hydrogen stock exceeds its

working limits [137]. In these topologies, such as those ana-

lysed in Ref. [185], the surplus or deficiency of energy is

adjusted by injecting energy from the grid or purchasing en-

ergy from the grid. These topologies increase the strategy's
adaptability and ensure demand regardless of the energetic

environment. Also, the described model [176] demonstrated

that RE integrated into the model as inputs having priority to

the grid. Furthermore, P2G can supply services to the power

grid and operate as an alternative to grid expansion for electric

networks with significant wind and PV penetration [169].

Fischer et al. [167] optimised grid operating to reduce load. The

power-to-gas plant was optimised using model predictive and

rule-based control. It can be stated that hydrogen produced

electrolytically can aid in balancing the electric grid (storage)

and provide an energy carrier for usage in other industries.

Fig. 10 depicts the development steps for hydrogen across

many applications. Hydrogen can be utilised in fuel cells,

stoves, turbines, internal combustion engines, gas boilers, and

the chemical and petroleum industries [9]. The real value of

hydrogen electrolyser and FC technologies are realised when

they are implemented on a large scale and in numerous ap-

plications. This can also provide opportunities and directions

for the future development of technology. Overall, hydrogen is

important for balancing the electric grid, decarbonizing the

transportation industry and essential for various industrial

processes [37].

In term of price, low-carbon solutions become more

competitive when fossil fuel prices rise [187]. However, since

2013, some countries reported the RES-electricity output

exceeding national demands and negative price were recorded

(103 times in Germany in 2017) [188]. Today, RES-electricity

production considerably influences the kWh price on the
map (2020e2031 beyond) [186].
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market [188]. According to Ref. [189], hydrogen mobility (7

V/100 km) is cheaper than fossil fuels (15.6V/100 km). Inmany

other countries, the breaking point is approaching that can

make hydrogen production even cheaper (5.4 V/100 km). It is

interesting to notice that fuel prices will rise, including for

natural gas, and it will be better to utilise hydrogen electrolyser

rather than fuel for other uses because they have a higher

added value (can be provided at refuelling stations as a clean

fuel for fuel cell electric vehicles or utilised as a chemical

feedstock). Additionally, the Hydrogen Council [188] estimates

that through 2030, $280 billion must be invested in the

hydrogenvaluechain, spanningproduction todelivery to retail,

aswell as the industries that supply end-use equipment. Long-

term storage demand will rise by 60e70% in the coming years.

In Germany, 15% of electricity is used to produce hydrogen to

develop an energy system with 80e90% renewable electricity.

Experts predict that supporting the renewable energy system

utilising hydrogen may demand capital investments of $20

billion in the distribution network, including liquefaction

plants and vessels, and $30 billion in storage capacity until

2030.
Issue, challenges, and solution

Hydrogen offers tremendous efficiency, can be produced from

awide rangeof domestically accessible resources and emits no

pollutants or greenhouse gases. Developing hydrogen as a

major energy carrier will necessitate the resolution of

numerous logistical, technological, and economic difficulties

[190]. These difficulties may motivate a research team to

consider fresh lines of inquiry or potential applications for

hydrogen electrolyser technology. This section summarises

the main issues, challenges, and solutions of hydrogen-

powered energy systems which considered the electrolysis

methodologies, capital cost, water utilization, rare materials,

electrolysis efficiency, environmental impact, storage and se-

curity considerations.

Electrolysis methodologies

Most electrolysis technology is alkaline-based; however, PEM

and SOEC have been developed [48]. Raising operating tem-

peratures in electrolyzer is not a simple process. High tem-

peratures in acidic PEM electrolysers exacerbate corrosion

and membrane stability difficulties, making high-

temperature PEM electrolysis inappropriate. Alkaline anion

exchange membranes are promising PEM alternatives [191].

Cross-permeation poses a formidable obstacle for AEL to

achieve reliable gas purity at high pressure [86]. SOEC elec-

trolysers are the most effective in electrical efficiency but

the least developed. SOEC has significant challenges that

hinder the SOEC technology: i) functionality under pressure

is difficult because vitreous cell gaskets cannot withstand

raised pressures, ii) material stability [86], and iii) and hot,

pure oxygen generated at the anode is corrosive (cause

complexity and heat exchange problem). This must be dis-

solved to safeguard metallic components [192]. SOEC pro-

totypes promise high efficiency and localized heat

production [1].
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Capital cost

Capital costs are initial system investments. According to

Clerici & Furfari [193], the levelized cost of hydrogen (LCOH)

for today, 2030, and 2050 includes the efficiency and costs of

the electrolysers, the cost of the feeding RES, and their ca-

pacity factor. The current hydrogen production system

employing AELs costs 1000 to 1500 EUR/kW, including instal-

lation, while PEMELs cost 2000 to 3000 EUR/kW [69]. AWE is

well-developed, although production is minimal. AWE elec-

trolyser manufacturers make small-volume electrolysers for

specific markets, increasing BoP costs. AEL reduction in cost

relies on more price production, whereas PEM price reduction

requires technological advances. However, installation tech-

nologies and economies of scalemay lower capital costs in the

future. Generating hydrogen in a cost-competitive method is

regarded as the greatest constraint for water electrolysis to

promote clean hydrogen as an energy vector [1]. By 2030, there

is an expectation of a significant reduction in the capital costs

of both electrolyser and fuel cell (FC) systems, particularly the

stack cost. One approach to reducing costs and maintaining

efficiency is by increasing the active area of the stack, which

will reduce the number of cells needed to produce a specific

amount of hydrogen, as outlined in Ref. [194]. Moreover, the

increasing political interest in green hydrogen can accelerate

the reduction in costs. National and international goals can

have a direct impact on the economy and industry. The sup-

port of public and private investments can promote the

development of cutting-edge technologies, optimise

manufacturing, construction, and installation processes, and

mature the industry [195].

Utilization of water

Electrolysis of water, or splitting it into hydrogen and oxygen,

began commercial use in 1890. According to Ref. [196], a PEM

requires 18 L of H2O and 54 kW-hours of power to produce 1 kg

of H2. Water is required for the electrolysis-based production

of hydrogen [69]. If all of today's devoted producing hydrogen,

70 Mt, was supplied by water electrolysis, water use would

account for 1.3% of theworldwide energy sector's water usage.

For desalination of salt water, reverse osmosis is an alternate

solution and has little impact on the entire cost of producing

H2. Currently, the integration of seawater into the water

electrolysis process must be facilitated [197].

Furthermore, the use of water in electrolysis can cause

environmental problems, if the water source is not properly

evaluated and managed [198]. The electrolysis procedure re-

quires freshwater free of contaminants such as salts and

minerals. It is anticipated that there are 1.4 M km3 of water on

Earth, of which just 2.5% is freshwater. 69% of freshwater is

snow or ice, 31% is groundwater, and 0.2% is useable to

humans [199]. If the water used for electrolysis is not properly

treated and filtered, it can result in the discharge of contam-

inated effluent, which can be detrimental to aquatic ecosys-

tems and have potential health consequences for humans.

Electrolysis water and energy sources must be properly

examined for decreased environmental consequences. Solar

and wind power can minimise electrolysis' environmental

impact. Different filtrations (graphene nanotubes and
ologies and their modelling for sustainable energy production: A
rogen Energy, https://doi.org/10.1016/j.ijhydene.2023.04.014
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nanolayers, carbon dots, activated bentonite, various nano-

particles, etc.) and coagulation technologies (enhanced by

electricity, various nanomaterials, etc.) [199] can exhibit good

water purification capabilities. Electrolytic cell effluent can be

purified and reused, saving water.

Utilization of rare material

Electrolyser systems utilise rare materials for electrode cata-

lysts, electrolyte additives, etc [69]. Every metal has a partic-

ular level of activity, corrosion resistance, electrical

resistance, and durability. Nickel, Raney nickel, and cobalt are

commonly employed as electrode materials in alkaline solu-

tion electrolytic baths because of their corrosion resistance

and satisfactory cost [200]. Corrosion resistance applies not

only to the utilised catalysts but also to the counter electrode

and separate plates. Noble catalysts (Pt, Ir, and Ru), titanium

current collectors, and separator plates are costly, and re-

sources concentrated enough for profitable mining are scarce

[201]. PEM electrodes need to use distinct materials for strong

corrosion resistance and catalytic activity. Significant market

penetration of PEM electrolysis is expected to affect the

requirement for iridium and its pricing [13]. Catalyst cost

reduction is a priority to lower stack costs. Advanced support

structures, mixed metal oxides, and nanocatalysts offer so-

lutions [69]. Researchers have continued using platinum

nanoparticles supported on carbon black (Pt/C) as standard

PEM electrolysis catalysts [13]. Fuel cell use in Europe in 2030

will demand 7% of the world's platinum supply [69]. In addi-

tion, unique synthesis techniques for producing new support

materials, catalysts, and electrode systems are required [13]. A

roadmap should be developed for the development of elec-

trocatalysts and components over the years. This should

include plans and guidance for enhancing technology, dura-

bility, and cost-effectiveness, as well as future insights [13].

Electrolysis efficiency

Electrolyser efficiency refers to the electrolyser's converting

electricity into hydrogen. Present electrolyser system effi-

ciency and durability are not sufficient, holding back the

commercial release of hydrogen energy systems. The limita-

tion in efficiency due to the parameters affects the overall

electrical resistance of the system. Nowadays, water elec-

trolysis system efficiency is near its optimum. A PEM system's
efficiency is 60%, which is predicted to rise to 67%e74%. The

aim for AEL systems is 70%e80% electrical efficiency [69]. Ionic

liquids have been used to enhance electrolytic solution con-

ductivity, stability and make them a promising alternative.

Souza et al. [202] used an ionic liquid sample of 1-butyl-3-

methylimidazolium-tetrafluoroborate in water as an electro-

lyte solution at ambient temperature with certain cheap

electrode materials such as nickel, carbon steel,

nickelemolybdenum alloy, and molybdenum. All electro-

catalysts had system efficiency between 97.0% and 99.2%

[202]. The efficiency recorded was higher than commercial

and industrial electrolysers. Nonetheless, it ought to have

taken into account that most such electrolysers operate at

current densities significantly higher than the experimental

value [202]. As demonstrated by Asghari et al. [197], a holey
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nanostructure and good electrical conductivity of electro-

catalysts are required to improve electrolysis electrode effi-

ciency. Additionally, significant control and the capability to

operate the energy system efficiently can increase the effi-

ciency of these electrolysers [203]. The proposed project must

optimise the design characteristics of each subsystem to in-

crease efficiency. A deeper analysis can also construct an

experimental setup (eg: the polarisation curves of PVs and

electrolysers ought to be precisely matched) for additional

inquiry into the real efficiency and verification of the theo-

retical results [204]. To date, there is no benchmark to mea-

sure the efficiency process of hydrogen electrolyser by

including heat. The European Commission supports defining

criteria for NAT water electrolysis [1].

Impact on the environment

Global warming is regarded as a significant environmental

issue caused by the uncontrolled use of fossil fuels such as oil,

coal, and natural gas since it contributes to disastrous events

such as floods and droughts. Hydrogen can decarbonize en-

ergy systems, making its adoption crucial. Under this sce-

nario, numerous countries have launched significant

attempts to address this issue. Canada pledged to reduce GHG

emissions by 30% below 2005 levels by 2030 [205]. South Korea

launched its "2nd Climate Change Response Master Plan" to

lower greenhouse gas emissions from 709.1 million tonnes in

2017 to 536 million tonnes in 2030 for a sustainable and low-

carbon greener society [206]. However, hydrogen might be

considered an indirect greenhouse gas [69]. Hydrogen tech-

nologies can replace fossil fuels that directly produce man-

made greenhouse gas, but production, compression, storage,

and transportation emissions can lead to indirect greenhouse

gas concentrations that could affect atmospheric chemistry

[207]. According to Rujiven et al. [207] global molecular

hydrogen emissions could range from 0.2 to 10% in an energy

system. However, before the widespread use of hydrogen, it is

necessary to investigate the uncertainties surrounding its ef-

fects as a greenhouse gas in energy systems. Policymakers

must consider the potential negative impacts of hydrogen use

in the energy system and implement specific regulations on

molecular hydrogen emissions and air pollutants, as well as

policies promoting the use of hydrogen energy technologies.

Storage and security considerations

Hydrogen electrolysis technologies need to address storage

and safety concerns as these are crucial aspects in the design

of energy systems and plants. Ensuring safety is essential not

only for the well-being of operators and personnel but also for

the surrounding public and the region [165]. The incident

involving hydrogen technologies was reported. Hydrogen has

been associated with danger since the Hindenburg disaster,

which resulted in the explosion or burning of hundreds of

hydrogen-powered airships [208]. It results in the deaths of

many victims. Fig. 11 depicts several instances in the Hin-

denburg accident involving hydrogen-inflated airships.

Furthermore, Sakamoto et al. [209] also present the accident

database for hydrogen and hydrogen fuelling stations in Japan

and the USA.
ologies and their modelling for sustainable energy production: A
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Fig. 11 e Hydrogen technology incidents [211]: A) Fire destroyed airship Schwaben in Dusseldorf, B) USA Army airship Roma

perished after it collided with high-tension electrical wires near Langley Field, C) British R101 lost altitude and crashed near

Beauvais, France, D) Hydrogen fire at Lakehurst Naval Air Station destroyed Hindenburg.
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Hydrogen, like all fuels, is dangerous. Thus, the safe use of

any fuel focuses on preventing situations with combustion,

oxidant, and fuel [210]. Some of the hydrogen's characteristics
require additional engineering controls to ensure its safe use

[203]. Investigating the safety and reliability of hydrogen dis-

tribution to users is essential. It is important to understand the

characteristics of hydrogen, implement safety measures into

hydrogen systems, and provide training in safe hydrogen

storage andhandling. Although the limitations and challenges

of water electrolysis have been summarized in a literature re-

view, there are still many issues that need to be addressed.

With the growing demand for green energy, water electrolysis

has gained significant interest, and it is essential to collect and

review past research and development for future studies.
Conclusion

The demand for hydrogen as an energy carrier is rising, driven

by concerns such as climate change, population growth, and

the depletion of fossil fuels. Climate change is one of themost

pressing issues of our time. To address this issue, reducing

CO2 emissions from the power sector, transportation, in-

dustry, and heating is essential. Hydrogen has the potential to

play a significant role in solving this problem, as green

hydrogen can aid in decarbonizing various industries, such as

manufacturing, transportation, and electricity production.

Efforts have been made to expedite this transformation pro-

cess and make it a reality. To contribute to this effort, the

primary objective of this review is to provide an overview of

academic research trends and identify the characteristics and

development of hydrogen electrolyser technologies and their

modelling for sustainable and green energy production. The
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review examines the fundamental concepts of numerous

hydrogen production methods and their benefits and draw-

backs. Additionally, it focuses on recent advancements in

water electrolysis technology, including water electrolysis

technologies, electrolyser, hydrogen as sustainable energy

storage, and project-based hydrogen storage. The review also

highlights recent research on electrolyser modelling, control

techniques, technology, and utilization. Based on the review,

several challenges and open issues that need to be addressed

to enhance the effective improvement of hydrogen electro-

lyser technologies have been highlighted. The outcomes of

this study show that an energymanagement control system is

necessary to operate, integrate, and interconnect components

in a generation system, thereby ensuring safe operation and

desired outcomes. The majority of scientific publications

suggest that simulating the control algorithm for hydrogen

energy systems can increase performance and reduce costs.

The challenge of hydrogen electrolyser is evaluated in detail in

section 5, where suggestions for future research are provided.

Addressing these challenges will boost the applications of

hydrogen electrolyser. According to a review of the literature,

many improvements are needed in the near future. To

advance this technology, several recommendations should be

considered. Firstly, the control strategy should be updated and

improved to enhance the safe operation, capacity, security,

lifetime expansion, functions, and efficiency of the electro-

lyser. Additionally, cost reduction should be a priority without

compromising the system's performance and durability. Sec-

ondly, novel techniques to boost grid stability should be

investigated, such as energy storage technology imple-

mentation in simulated systems, such as backup electrolyser

facilities. Thirdly, further research is needed to commercialize

water electrolysis-based systems that use renewable energy
ologies and their modelling for sustainable energy production: A
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to produce hydrogen and develop infrastructure, economi-

cally viable technologies, and a sustainable hydrogen econ-

omy. Fourthly, future research may explore the techno-

economic implications of utility company and station man-

agement modelling to predict the trade of fluctuating renew-

able energy output, the distributed power functioning of

electrolysers, and the complexities of hydrogen production,

storage, and demand. Finally, policymakers should encourage

the development of hydrogen-integrated energy systems to

facilitate hydrogen's integration into today's energy markets.

In conclusion, this study highlights the need for advance-

ments in hydrogen electrolysis research and progress to

establish the hydrogen vector as a reliable, cost-effective

alternative to resolve renewable energy-related issues. By

improving the performance of electrolysis, the integration of

hydrogen into the global electricity system can be accelerated.
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